视频智能分析的详细说明
前言
智能视频分析,通过计算机实时分析视频图像,通过规则过滤,将违反设定规则的事件进行报警,通过视频分析技术,可以真正对视频监控系统效能发挥到最大,视频监控系统真正由能看到变成能想到。改技术从60年代开始,科学界一直都在不断完善,上海石安智能视频分析立足业界最新技术,在不求功能最多原则下,力求自身提供的智能视频分析仪的准确性达到业界最高水平,针对如何达到视频分析高准确性,提出了一些自己的看法。
准确率、误报率漏报率定义:
准确率:就是指设定分析规则后,捕捉的报警视频均是视频分析规则规定过滤的视频报警图像。简单说就是准确发现。
误报率:在没有出现攀高、非法跨越、非法闯入、长时间滞留、打架斗殴、夜晚起床等实际行为下,视频分析系统却产生报警信号数量比率,称为误报率。
漏报率:在出现攀高、非法跨越、非法闯入、长时间滞留、打架斗殴、夜晚起床等实际情况下,视频分析系统却不产生报警信号数量比率,称为漏报率。
准确率=1/(误报率+漏报率)
影响视频分析准确率要素:
影响视频分析准确率的要素非常多,主要包括:
1、风吹动树叶或物体产生晃动、包括摄像机本身的晃动;雪天色彩、雪花漂浮;雨滴水斑、积水反光;雾气模糊等。
2、动态物体包括飞鸟在视频中的飞舞,蚊子蜘蛛在镜头前的黑斑,甚至各种小动物(老鼠等)的干扰
3、光线变化:太阳从东升起在日落,光线变化非常复杂,另外物体移动产生的光影变化都是无法预期的。
4、海浪潮涌长生的潮涨潮落,水面波光粼粼等。
5、视频分析算法自身的缺陷:很多视频分析算法自身存在很多不确定性,就是在一些很好的环境下,都会产生不少的报警,说句实话,连视频算法开发者都无法发现和理解,因为很多逻辑语句集中在一起,潜在缺陷比比皆是。
6、视频分析功能:在一些基础功能如警戒线、警戒区域、视频遮断,这样的准确率会高一些,高级功能:如夜晚起身、打架斗殴等视频分析,能达到商用的,目前笔者掌握的信息,可能就上海石安智能可以达到要求。
视频分析准确率遇到的最大挑战
在智能视频分析使用中,目前遇到最大困难,在一些警戒线或者警戒区域使用中,由于各种干扰因素的交集影响,产生的误报率都是很高,很多视频分析仪产品在努力降低漏报率时候,无法遏制误报率大幅提升,一路视频24小时内产生的误报报警多得无法使用,综合准确率始终无法提供,很多智能视频分析系统(石安视频分析)成为了给领导演示的摆设
1数据获取
数据获取看似简单,但是需要把握对问题的商业理解,转化成数据问题来解决,直白点讲就是需要哪些数据,从哪些角度来分析,界定问题后,再进行数据采集。此环节,需要数据分析师具备结构化的逻辑思维。
2数据处理
数据的处理需要掌握有效率的工具:Excel基础、常用函数和公式、数据透视表、VBA程序开发等式必备的;其次是Oracle和SQL sever,这是企业大数据分析不可缺少的技能;还有Hadoop之类的分布式数据库,也要掌握。
3分析数据
分析数据往往需要各类统计分析模型,如关联规则、聚类、分类、预测模型等等。SPSS、SAS、Python、R等工具,多多益善。
4数据呈现
可视化工具,有开源的Tableau可用,也有一些商业BI软件,根据实际情况掌握即可。
数据分析:一般指对数据进行研究的方法和过程。
商业智能:是指将数据分析商业化、信息化,实现商业价值的企业信息化建设过程。
所以数据分析包含的内容可以很宽泛,而商业智能则更聚焦于实现商业价值。
1数据分析的概念:
通俗意义上来讲,“数据分析”并没有特定的应用场景,人们更喜欢将数据分析作为一种行为过程去讨论,或在其后加上诸如方法论这类的具体名词来定义。
作为对数据进行研究的过程而言,数据分析将经历明确目标、收集、处理、探索、展现、发现问题这几个步骤。
数据分析的六个步骤
在这个过程中我们更加注重过程劳动和成果价值,而这个过程小到凝视身边人一眼,大到制定国家发展五年计划,它发生在生活的方方面面。
举个生活中的小例子,比如我们想买一款适合自己的手机,在对手机市场不熟悉的情况下,可以在各大论坛搜集参数信息,结合自己的预算、喜好,选出要购买的手机品牌、价格、性能等需求细节,进而确定我们的最终选择。
这样的行为也可以是属于数据分析,属于个人行为,也并不需要专业的工具,更不会对个人产生直接的商业价值。
这意味着广义上的数据分析代表的仅是一种行为的过程,没有特定的应用对象和场景,和商业智能并没有很明确的对比意义。
11数据分析方法:
对于具体的数据分析方法,在各行各业的应用也是多如繁星、数之不尽,下面的一些方法作为例子,为大家抛砖引玉。
数据分析方法
2商业智能的概念:
商业智能是指将数据分析商业化、信息化,实现商业价值的企业信息化建设过程。
“商业智能”(或商务智能)这个词其实诞生于上世纪90年代,经过几十年的发展演变,许多人会将商业智能看成一种解决方案,最终目标是为管理者提供决策支持。
究其实际情况而言,解决方案是一种运用合理的方法、合理的工具手段,以合理的成本投入去解决企业一段时间范围内可预见难题的行动方案,是有保质期的。
而商业智能是经过阶段性递进、持续优化的信息化建设过程,追求的是持续收益、长期决策支持,而不是短期见效。
21商业智能建设的难点:
而且在商业智能建设过程中,我们会遇到以下几大难题:
平台挑战:数据分析链条很长,从采集、治理、整合、存储、计算、建模到展现,涉及工具和技术太多,成本高昂,架构复杂,需求实现效率太低,难以满足企业业务的洞察需要。
应用挑战:IT部门辛苦做出的数据报告,业务部门觉得没用,问业务部门有什么需求,又难以提出。
服务挑战:无论是自建服务团队还是找第三方供应商,缺乏贴身的精细化专业服务能力导致解决问题效率低下,带来负面用户反馈。
运营挑战:用的都是国际大牌产品,但系统就是不稳定,问题频出,本质是因为缺少运营的系统化方法。
解决商业智能建设过程中的难题,使商业智能建设过程能在企业内取得长远收益,为管理者做持之以恒、稳健发展的决策支持,发挥数据价值,进而驱动商业价值体现,我们需要的是数据驱动业务增长能力模型——PASO能力模型。
PASO能力模型
通过PASO能力模型,稳健的完成企业商业智能建设过 程,获得长期受益,才是真正意义上诠释和体现数据的商业价值,实现长期决策支持。
举个例子:
这是我们根据某企业国际物流业务的实际情况,进行调研和分析之后,建立的一套营销体系模型。
通过营销体系模型,分析出每一步的销售过程的数据,从而不断改进销售技巧以及优化服务流程,最终实现了广告投放上的价值最大化,以及销售流程环节标准化。
这是一个企业应用商业智能的实例,也显示出我刚才提到的,商业智能不是短期解决问题的方案,而是一个追求持续收益的长期建设过程。
人工智能(AI)是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能的目的就是让计算机这台机器能够象人一样思考。
在1955的时候,香农与人一起开发了The Logic TheoriST程序,它是一种采用树形结构的程序,在程序运行时,它在树中搜索,寻找与可能答案最接近的树的分枝进行探索,以得到正确的答案。
这个程序在人工智能的历史上可以说是有重要地位的,它在学术上和社会上带来的巨大的影响,以至于我们所采用的思想方法有许多还是来自于这个50年代的程序。
1956年,作为人工智能领域另一位著名科学家的麦卡希召集了一次会议来讨论人工智能未来的发展方向。从那时起,人工智能的名字才正式确立,这次会议在人工智能历史上不是巨大的成功。
但是这次会议给人工智能奠基人相互交流的机会,并为未来人工智能的发展起了铺垫的作用。在此以后,人工智能的重点开始变为建立实用的能够自行解决问题的系统,并要求系统有自学习能力。
在1957年,香农和另一些人又开发了一个程序称为General Problem Solver(GPS),它对Wiener的反馈理论有一个扩展,并能够解决一些比较普遍的问题。
别的科学家在努力开发系统时,右图这位科学家作出了一项重大的贡献,他创建了表处理语言LISP,直到许多人工智能程序还在使用这种语言,它几乎成了人工智能的代名词,到了今天,LISP仍然在发展。
扩展资料:
一、信息技术简介
信息技术(Information Technology,缩写IT),是主要用于管理和处理信息所采用的各种技术的总称。它主要是应用计算机科学和通信技术来设计、开发、安装和实施信息系统及应用软件。
它也常被称为信息和通信技术(Information and Communications Technology, ICT)。主要包括传感技术、计算机与智能技术、通信技术和控制技术。
二、社会功能
信息技术在全球的广泛使用,不仅深刻地影响着经济结构与经济效率,而且作为先进生产力的代表,对社会文化和精神文明产生着深刻的影响。
信息技术已引起传统教育方式发生着深刻变化。计算机仿真技术、多媒体技术、虚拟现实技术和远程教育技术以及信息载体的多样性,使学习者可以克服时空障碍,更加主动地安排自己的学习时间和速度。
特别是借助于互联网的远程教育,将开辟出通达全球的知识传播通道,实现不同地区的学习者、传授者之间的互相对话和交流,不仅可望大大提高教育的效率,而且给学习者提供一个宽松的内容丰富的学习环境。远程教育的发展将在传统的教育领域引发一场革命,并促使人类知识水平的普遍提高。
互联网已经成为科学研究和技术开发不可缺少的工具。互联网拥有的600多个大型图书馆、400多个文献库和100万个信息源,成为科研人员可以随时进入并从中获取最新科技动态的信息宝库,大大节约查阅文献的时间和费用。
信息网络为各种思想文化的传播,提供了更加便捷的渠道,大量的信息通过网络渗入到社会各个角落,成为当今文化传播的重要手段。
参考资料:
-信息技术
为深入推进人工智能等新技术与教师队伍建设的融合,教育部分批启动了人工智能助推教师队伍建设试点工作。推进人工智能与教育教学深度融合,无疑是赋能教师专业发展、深化教师评价改革、推动教师队伍建设的有力抓手。在试点工作推进过程中,一批试点学校或区域在利用人工智能助推教师队伍高质量发展方面作出了卓有成效的 探索 。我们选取北京大学等6个试点的成果概要展示,以供参考。
————————————————————
北京大学:提升教师数字素养与应用能力
在人工智能助推教师队伍建设试点工作中,北京大学通过组织培训、资助专项课题等方式提升教师的数字素养与应用能力,具体举措与成效分为以下四个方面。
一是开展人工智能助推教师队伍建设及数字人文的专题培训。
北京大学通过邀请人工智能相关领域的专家学者,研讨了关于教育发展的数字化智能化、人工智能驱动下的教育创新与应用等具体内容,累计有上千人次的北京大学一线教师通过线上线下相结合的方式参与了培训活动。目前北京大学正在积极推进与剑桥大学的合作, 探索 数字化、智能化等新技术对未来教育的影响和改变,致力于促进基于教学实践的研究和全球范围产学研的交流合作。
二是建设支撑教师培训的专门研修平台和学习资源。
为进一步做好教师培训工作,方便教师研修和学习,北京大学在2022年春季学期部署建设了北大培训平台。该平台不仅为教师线上参与直播培训或回看录播提供了便利,也为教师的长期研修提供了丰富的学习资源。同时该平台将自动记录教师的研修数据,为教师的研修情况提供数据支撑。
三是遴选人工智能研究与应用方面基础好的院系和实验室进行先行先试。
以大数据、人工智能为代表的数字技术在北京大学的人文、考古、医学、化学材料等学科领域有了很好的建设基础,并取得了一定成效,促进了信息技术对传统学科的赋能升级。
比如在数字人文领域,为了打造智能时代的数字工具和研究平台,北京大学积极加快推进建设哲学 社会 科学数据库、古籍智能整理系统、古典文献大数据分析平台、历代目录集成可视化系统、儒家学术史知识图谱平台、历代年谱GIS可视化平台等支撑平台,以新兴技术重构和利用经典文献形成新的研究契机。
四是在全校范围内培育孵化人工智能改进教学的应用案例。
北京大学启动了“北京大学人工智能助推课程建设项目”,作为人工智能助推教师队伍建设的子项目。学校在全校范围内征集了56门课程进行人工智能等技术促进教育教学改革的实践,旨在提高教师的信息化教学能力,促进人工智能与教育教学的深度融合。
同时,北京大学还积极推进教师大数据建设与应用。北京大学教师教学档案袋平台是实现教师数据的融合共享、机构协同创新的重要平台系统。教师教学档案袋平台还在持续建设中,正逐渐 探索 尝试纳入人工智能技术,在持续积累教师数据基础上进行数据挖掘,建立教师画像,为教师发展提供有针对性的资源和服务,加强教师教育。该平台除了为教师教育和发展提供支持,还要构建基于数据、面向过程的教师评价新模式,充分发挥大数据的优势,创新教师评价工具、优化评价管理、提升评价质量和拓展评价结果。
华东师范大学:深度融合人工智能与教育教学
以自身的特色和优势为基础,聚焦人工智能助推高校教师、师范生、中小学教师围绕育人联动发展的追求,华东师范大学经过5年的努力,将在师资队伍、人才培养、环境建设、教育范式、 社会 服务等方面实现全面革新。
面向师范生,学校在人工智能助推教师队伍建设行动中推动了以下几个方面的工作。
打造“一平五端”实训生态平台,实现过程性智能测评。基于见习、研习、实习三习一体化的教师教育实践体系,打造线上线下相融合的“一平五端”教学能力实训生态平台,包括一个教师教育实训教学一体化平台,以及电子资源端、移动听评课端、教育实习端、课堂互动端、数据管理端等五个数字端。
构建微型认证标准与规范体系,推动能力本位的培养。在牵头研制的《中小学教师信息技术应用能力标准》和《师范生信息化教学能力标准》基础上,学校聚焦基础教育教学的核心环节与关键能力,创造性研制了师范生教学能力评价体系以及《师范生课堂教学能力微认证体系》等师范生系列标准与规范。
研制师范生智能素养框架,夯实新时代教师必备能力。对于师范生智能教育素养这一新时代教师需要必备的基础能力,学校组织专家团队研制了师范生智能教育素养框架,框架共有13项能力,制定了对应的课程体系框架并绘制了学校已开课程的课程谱系。
面向中小学教师,学校统筹多学科、联动基础教育学校与企业, 探索 “智能工具支撑、能力素养提升、发展模式变革”的发展路径,现已产生了一批阶段性成果。
智能工具做支撑,逐步构建智能化支持体系。学校统筹计算机科学、教育学等优势学科成立上海智能教育研究院,聚焦“学—教—评—管”等教育环节痛点问题开展基础研究和应用研究,确定了三维自适应学习、高质量课堂诊断与改进、核心素养导向的智能评价等五个重点研究方向,推动快乐机器人、作文评阅机器人、虚拟仿真实验、 游戏 化学习等四项工程应用落地。同时面向多个学科开发应用场景,研发应用产品。
课程重塑为途径,精准提升教师关键素养。学校聚焦教育数字化转型对教师队伍建设的新要求,着力打造“教育数字化转型中的教师关键能力培养计划”,从“精准教学中的数据决策力”“跨学科教学中的融合设计力”“智能环境中的创新应用力”三个专项出发,助力中小学教师在数据决策、跨学科教学设计与实施、人工智能教育应用等能力方面形成突破。
模式变革做引领,形成面上辐射的成熟经验。学校在“人工智能助推教师队伍建设项目”推进过程中,逐渐 探索 、形成了“高校—企业—学校”为主体的智能教育共同体模式和“共学、共研、共创”为路径的能力提升模式。
面向高校教师,学校激发他们进行教学改革的意愿,同时着力提升教师智能素养。一是制度建设为保障,有力推进智能教育产学研。二是梯度指导为支撑,渐次提升智能教育素养。三是课程重塑为挑战,做实智能教育育人主阵地。四是专项研究搭平台,构建智能教育教学环境。
华中师范大学:构建“人工智能+教师教育”新体系
华中师范大学于2021年启动实施人工智能助推教师队伍建设行动试点工作,基于学校人工智能助推教师队伍建设行动试点工作在标准、工具、模式、应用及服务上的需求,稳步推进“五大任务”,已取得一定进展。
教师素养刻画与课程资源建设评估。华中师大于2020年11月获得国家标准立项研制信息素养国家标准,以此形成了一系列教师信息素养评价指标、模型、工具和系统,并于2021年启动教师数字画像评价指标体系研究,打造以数据为基础的教师数字画像和多元评价体系,从师德修养、专业知识、教学能力、教研能力、育人能力、 社会 影响和多方评价等维度动态描述教师数字画像,为教师工作减负、专业发展赋能。
智能化环境建设与平台工具研发。建成“人工智能+教师教育”综合实验实训平台,全面支撑教师职前职后一体化培养,覆盖教学、教研和培训多个领域。推进智慧教育环境提速升级,研发支撑创新教学的“小雅平台”。学校自主研发了云端一体化智能教育SPOC平台——“小雅”,构建了课程知识图谱、智能问答、智能推荐等多个智能模块,支持教学数据的伴随式采集和数据驱动的分析,实现了教学理论具象化、教学设计标准化、教学行为数据化、教师评价精准化,全面促进大数据、人工智能等新兴技术与教育教学的深度融合。
智能教学与研修模式创新。针对基础教育传统教研模式组织难、协调难和研修数据采集难等问题,学校推进“互联网+大数据+人工智能+教师研修”深度融合, 探索 形成了线上线下相结合的课例研修模式、教师工作坊支持的主题研修模式、混合学习环境下的微课题研修模式、直播课堂支持的同侪研修模式等四种研修新模式。利用信息技术对基础教育教师教学数据进行分析,生成精准、高效的课堂教学AI报告,包括课堂师生行为报告、课堂参与度数据图等。
人工智能支撑师范生职前职后一体化培养。为营造更真实的实训环境,提升师范生“三字一话”能力水平,学校建设了智慧书写教室和智能化普通话训测中心,建设云课堂“师范生技能培养”课程,师范生可以随时随地获取专业技能比赛、优秀作品等资源。建设数字化教师教育资源, 探索 建立“模拟小课堂”“微格技能小组”等小班化教学与实践制度。开展“人工智能+”名师课堂创新应用,如开展师范生与国培教师的云端对话以及国培骨干教师优质课程展示活动等,并录制国培骨干教师优质课及微讲座、中学名校名师论坛资源等。
人工智能助推乡村教师教学能力提升。构建“三个课堂+AI”的“开好课”模式。针对乡村薄弱学校的教与学问题, 探索 “三个课堂+AI”创新实践,利用“专递课堂+AI”赋能学生的自主学习,“名师课堂+AI”赋能教师的专业发展,“名校网络课堂+AI”促进优质资源和自适应的汇聚。同时,面向中西部开展人工智能助推教师队伍建设专项培训。
东北大学:全面提升教师信息素养
东北大学自入选教育部第二批人工智能助推教师队伍建设试点高校以来,将人工智能助推教师队伍建设作为“十四五”发展规划重点内容和学校教育信息化重点工作予以高度重视,着力提升教师素养,建设创新团队,赋能教师队伍评价改革。
实施教师信息素养提升计划。学校制订教师信息素养提升计划,对标新时代高素质专业化创新型教师队伍建设,以智能技术为手段,建立满足教师职业生涯发展全程支撑、全面覆盖的教师教育培训架构和课程体系。学校2021年底出台《东北大学教职工培训规定》,结合教师成长特点与发展需求分类组织教育技术培训,将人工智能素养提升作为重要内容纳入教师培训制度安排。教育技术培训结合现代教育技术发展趋势,以信息技术提升课程教学质量和水平为出发点,围绕在线开放课程的现状与展望、混合式教学改革、在线教育工具改进传统课堂教学等内容组织了52学时的培训。
重点支持人工智能领域教师队伍建设。围绕“人工智能”研究领域,学校通过实施“创新团队建设工程”“协议年薪制岗位聘任”“长聘教师岗位聘任”等举措,加大力度重点支持“人工智能”研究领域特色鲜明、创新活力强、研究方向明确、引领学科跨越式发展的高水平创新团队,如“工业互联网与工业人工智能驱动的智能化管理与控制系统团队”和“工业智能与系统优化团队”等;在工业人工智能领域布局发展,建设“工业人工智能研究院”“人工智能与大数据科学中心”“智能电气科学与技术研究院”等多个重要 科技 基地,为实现未来国家级优秀学术领军人才的培养以及新兴优势学科方向的确立奠定重要基础。学校鼓励教师开展自由 探索 ,开拓新的研究方向,打破学科专业壁垒。建立有利于学科交叉融合的学术评价和成果认定机制,优化学科交叉领域资源配置,瞄准 科技 前沿和关键领域,重点支持人工智能、智能制造与装备、深地深空、新能源及储能、新材料等研究方向的交叉融合,推动创新团队及所在学科实现跨越式发展。
大数据支撑教师评价改革。学校利用大数据采集和学习分析技术,对教师教学、科研等育人各环节数据进行深度分析,在职称晋升、聘期考核、团队遴选等工作中,充分利用大数据采集和全球引文数据库(Scopus数据库),对教师及所在团队在教育教学、科学研究、学术影响力等方面进行深度分析, 探索 建立包含第三方客观数据源分析评价在内的综合测评体系,全面了解教师的科研现状及发展趋势,利用Scival科研分析管理工具,查阅科研绩效分析、学科前沿分析、国际合作程度等,为教师及团队发展评价提供数据支撑。
北京市海淀区:信息技术支持教师进阶发展
北京市海淀区作为教育部第二批人工智能助推教师队伍建设试点区,充分利用互联网、人工智能、大数据、5G等新一代信息技术优势,聚焦高质量教师队伍建设关键问题,启动实施“海淀区人工智能助推教师队伍高质量一体化发展”试点。
一是推进智能教育新型基础设施建设,加快构建智能环境。海淀区系统推进智慧型教师研修中心——海淀区教师进修学校新校区智慧校园建设,启动远程互动教室、沉浸式演播厅等创新研修空间建设。
应用全方位支持教师混合式研修的海淀教研平台,该平台目前可以实现课程发布、自主选学、记录研修、学分认定等全过程信息化管理,留存研讨过程中的结构化资源。同时,配合在线研修建设了结构合理、内容优质、丰富多样的课程资源库。
二是 探索 技术赋能的教与学方式变革,促进课堂教学提质。开展三类“双师课堂”模式 探索 ,走出教师柔性交流新路径。以优质资源的重新配置为导向,系统规划了双师教学实施方案,组建稳定的双师协作伙伴关系。构建了适用于线下教学场景的“1+1协作直播”的双师课堂,适用于线上线下混合教学场景的基于“名师微课”的双师课堂等。
同时,开展促进学生自主学习的混合式教学模式研究与实践,研发调研工具,做好中小学线上教学指导。同时,凝练基于混合式教学设计与实施的典型经验,积累了优质的教学设计案例、教学课例、活动方案、教学工具等素材和资源。此外, 探索 基于大数据的精准教学模式,依托智能学习终端积极开展“基于在线学习行为数据的精准教学”和“基于学生学业水平的精准教学”两类实践。
三是提升教师作业设计与实施能力,助力“双减”政策落地。
建立学校作业网络系统和智慧作业方案,分学段 探索 技术支持下的分层、弹性和个性化作业的设计、布置与反馈路径与方法; 探索 了系统设计、课题研究与项目试点相结合的作业提质行动新模式。
四是开展人工智能支持的联合教研,促进教师一体化成长。开展65场“海淀‘大教研’之一体化联研”系列实践,开展三种类型的人工智能支持的联合教研实践,包括课例载体的联合教研、学科学术研讨类的联合教研、复习和命题为主导的联合教研,沉淀出一套可迁移的技术助力的联合教研典型工具和模式,积累并共享数字化学习资源。
五是建设数据支持的“精准培训”体系,支持教师进阶发展。面向全区中小学教师开展海淀区“十四五”时期教师培训现状及需求调研,基于全区教师培训需求的精准挖掘与分析,科学合理设计进阶培训课程。依托海淀教研平台开展线上线下相结合的新任教师培训、骨干教师研修、名师培养特色专题活动。研制“海淀区卓越教师专业素养标准及理想行为模型”,借助大数据手段建立教师成长过程评价与追踪机制,为下一阶段进一步 探索 教师“数字画像”、支持教师进阶发展提供依据。
上海市宝山区:打造“未来宝”数字基座
上海市宝山区自获批教育部人工智能助推教师队伍建设试点区一年来,聚焦教师队伍高质量发展,通过教育教学模式变革及育人方式转型,着力培养高素质创新型“未来教师”。
建设宝山教育数字基座,提供教师专业发展数字化支撑。针对教师信息化教学创新能力不足、薄弱学校教师应用能力水平低、教师机械性与事务性工作繁重等问题,宝山区建立“未来宝”数字基座,依托基座组织中心、应用中心、数据中心、消息中心、物联中心的五大核心能力,整区推进教师智能助手常态化应用,缩小校际数字鸿沟,优化数字化教学环境,整体提升全区教师信息素养,初步形成“未来宝”数字基座赋能教师队伍建设的新路径、新模式。一是基于组织中心能力,提供组织架构支撑。二是基于应用中心能力,赋能学校教育教学和管理服务。三是基于数据中心能力,实现人少跑路而让数据多跑路。四是基于消息中心能力,实现师生人员互联互通。五是形成三大“虚拟学校”方案,有力支撑疫情防控期间的教育教学。
推进“三个课堂”建设, 探索 缓解教师结构性缺编新路径。聚焦公平均衡,针对优质师资不足、薄弱学校教师教学水平不高、区域内校际差距大等现实难题,宝山区开展了智慧同侪课堂,利用5G、大数据、人工智能等新技术连通课堂,实现教师同步备课、同步上课、同步教研、同步研训以及同步课后延时服务,教师“智能手拉手”形成“1位教师+1个云端合作团队”的网络共同体,破解跨学科教学、教师单兵作战等难点,缓解教师结构性缺编难题,扩大优质师资辐射范围,同时提升教师教学实践与创新能力。
落实“双减”政策, 探索 人工智能支持的教学新形态。针对师生负担重、教学效率低、标准化教学模式难以兼顾学生个性化发展等问题,宝山区 探索 了人工智能支持的教学新形态。立足“双减”“双新”政策背景,以“两个减少、一个增加”为目标(即教师低智慧重复劳动减少,学生学习负担减少,学习效能提高),在基础教育全学段开展区域基于知识图谱的“智适应”学习系统的开发实践与应用推广,开发运用学科“智适应”学习系统,优化区域“未来宝”智能助教系统和智能学伴系统,助推个性化教学实践;通过资源建设,逐步实现智慧同侪课堂常态化应用,项目驱动、研用一体,助推教师教研模式创新,培养一批具有数字化素养的各学科应用型教师。
推进教师专业能力与需求评测, 探索 教师专业发展新模式。在教师专业发展方面,针对部分教师专业发展意识淡漠、职业倦怠,新教师对专业前景和发展方向把握不准以及教师教育与专业成长模式单一等问题,宝山区构建了教师画像和智能导航系统,依据教师职业生涯发展阶段特点,总结提炼优秀教师成长模型,借助智能技术给予教师适当、适时的协助,发掘教师潜能,为教师专业发展持续续航。
《中国教师报》2022年07月13日第13版
工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。
自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。
优点:
1、在生产方面,效率更高且成本低廉的机器及人工智能实体代替了人的各种能力,人类的劳动力将大大被解放。
2、人类环境问题将会得到一定的改善,较少的资源可以满足更大的需求。
3、人工智能可以提高人类认识世界、适应世界的能力。
缺点:
1、人工智能代替了人类做各种各样的事情,人类失业率会明显的增高,人类就会处于无依靠可生存的状态。
2、人工智能如果不能合理利用,可能被坏人利用在犯罪上,那么人类将会陷入恐慌。
3、如果我们无法很好控制和利用人工智能,我们反而会被人工智能所控制与利用,那么人类将走向灭亡,世界也将变得慌乱。
本文2023-08-04 18:38:21发表“古籍资讯”栏目。
本文链接:https://www.yizhai.net/article/13270.html