元素周期律中哪些是放射性元素
应该是元素周期表中吧。
元素周期表中的放射性元素有:钋(pō) Po、氡 Rn、钫(fāng)Fr、镭Ra、锕(ā)Ac、钍(tǔ)Th、镤(pú)Pa、铀(yóu)U、镎(ná)Np、钚(bù)Pu
人工放射性元素最初通过人工核反应合成而被鉴定的放射性元素。它们是锝、钷、镅、锔、锫、锎、锿、镄、钔、锘、铹、104、105、106、107、108和109号元素。
天然放射性元素是指那些最初是从自然界发现而不是用人工方法合成的放射性元素。
C14的半衰期只有五千多年而地球存在已有数十亿年,自然界却存在着保持一定水平的放射性碳元素,为使 C14的产生和衰变处于平衡状态,保持一定水平,必然存在着一种源泉。这个来源就在大气高空层,在那里,宇宙射钱中子和大气氮核作用生成C14。发现这一自然现象并用实验加以证实的是C14法创始人利比(WFLibby)。他从宇宙射线和人工核反应的研究中得到启发,认为自然界存在生成C14的条件,有可能检测出来经过仔细考查计算,并在实验中解决了低能量低本底测量上的技术问题,测出了自然C14。由此建立了C14测定年代的方法。
最初,外来的宇宙射线与大气作用产生宇宙射线中子。宇宙射线中子和大气中氮核起核反应产生碳-14:
0n1+7N14→⒍C14+1H1
这一反应都在高空完成,新生碳原子在大气环境中不能游离存在很久,一般都与氧结合生成C14O2分子,C14O2和原来存在于大气中的CO2化学性能是相同的,因此必然与原有CO2混合参加自然界碳的交换循环运动。
植物通过光合作用将CO2结合成植物组织,动物依植物为生,这就使生物界都混入了C14动物通过排泄,死亡,植物通过腐烂,沉积,进入表层土壤而使C14进入土壤,大气与广大海面接触, CO2又与海水中溶解的碳酸盐和CO2进行交换,因此海水、海生物及海底沉积物中都含有C14。所以,凡是和大气中的CO2进行过直接或间接交换的含碳物质都包含C14。
这种产生C14的自然现象存在已久,同时C14按5730年半衰期衰变减少,这类碳中C14水平必然会到达平衡值。由于碳在自然界的交换循环相当快,处于与大气互相交换的各种物质在名地的C14水平基本上是一致的。
利用这种到处都 存在C14的自然现象就可以用来断代。例如陆地生物、海洋生物在生命过程中由于同大气经常交换,衰变掉的C14经常能得到补充,但一旦停止了交换(如死亡、沉积),其C14就再得不到补充,C14水平因衰变而降低,每5730年降为原有水平的一半值。因此测量标本现存的C14放射性水平和它原始放射性水平相比较,就可以算出死亡或停止交换的年代,当然,几千年或几万年前处于交换状态的动植物的放射性水平是无法测知的,但若假定这种产生C14的自然现象几万年来都没有什么变化,就可以用现在世界各地处于交换平衡状态的动植物放射性水平,作为标本的原始放射性水平,即所谓“现代碳”放射性标准。
放射性衰变规律可用数学式表示,标本年代的计算公式如下:
A=τln No/NA
A: 标本年代
τ:C14平均寿命
NA:标本现有放射性
No:标本原始放射性
C14平均寿命是一个常数,由实验测定,测出No、NA即可计算出标本年代。
这就是C14断代的原理,由于这一方法所依据的是原子核的变化。这种变化不受周围环境的物理、化学条件的影响,而C14半衰期(5730年)正适用于对几千年到几万年的标本进行断代。另外,一些含碳的物质,如木、草、骨、贝壳等动植物遗骸在古代遗址中普遍存在,因此,C14法自1950年建立起,就成为有力的断代手段而广泛应用于史前考古学和第四纪晚地质学。
C14测定年代方法在技术上不同于一般放射性同位素测量,它的特点是放射性强度弱,能量低,自然碳中C14含量仅为12×10一10 %,每克碳的放射性强度仅几微微居里,即每分钟约有10 多个原子衰变,标本的年代越久远,放射性还会迅速降低,如二万年以上的标本,其计数率就会降到每分钟一次以下针对这种情况,必须专门设计低本底低能量β射线的高效率探测器,把标本中的碳制备成探测器的组成部分,并在特制的屏蔽室中进行测量如气体法将标本碳全部转成计数管中的计数气体,液体法则全部转成闪烁液的溶剂,这些基本要求就决定了C14年代测定必须要有一个完备的实验室,包括设有化学处理,标本制备的系统,完善的屏蔽设备,特制的探测器和能长时间工作而又稳定的电子测量系统,并且经过精心的操作才能保证数据准确可靠
你可以去你们那里最近的研究考古的地方
在探索微观世界的道路上,科学家们经过艰辛的不懈的努力,攻克了一个又一个难关,最终敲开了原子的大门。放射性的发现,可以说是奏响了人们跨入原子时代的前奏曲。
1895年11月一个寒冷的夜晚,德国匹茨堡大学的伦琴教授还在实验室里忙碌着。为了弄清阴极射线的性质,几个月来,他投入了极大的热情,夜以继日地工作。这时,他熄了灯,准备再做一次阴极射线实验。
高压电源接通了。忽然,一种奇异的现象映入了他的眼中:距阴极射线管不远的涂着铂氰化钡的屏幕上,不知什么原因竟闪出了一片黄绿色的荧光。
阴极射线管被黑纸板裹着,阴极射线是不会透射出来的,难道从阴极射线管中还能发出另一种射线,它能穿透黑纸板,映射到屏幕上吗?
伦琴试着把手挡在射线管和屏幕之间,屏幕上竟出现了一个吓人的图像——一只手的骨骼的图像!这肯定是一种新的神秘的射线,它能穿透黑纸、肌肉,但被骨骼挡住了。
这一发现使伦琴兴奋不已,他一连几个星期把自己关在实验室里,研究着这种射线的性质。当他发现这种射线还能使底片感光时,便为妻子拍下了一张手部骨骼的照片。
1895年12月28日,伦琴正式向科学界宣布了他的新发现,并在第二年初的一次学术报告会上,用这种射线当场为解剖学家克利克尔拍下了一张手的骨骼照片。伦琴的发现,震惊了世界,各地的学者、专家、新闻记者都千里迢迢地来登门求教。这种射线究竟是什么呢?是光?是带电微粒?当记者问他时,伦琴实事求是地说:“我真的不知道,它好像数学中的未知数X,我只好称它为X射线。”
X射线就这样问世了。17年以后,德国物理学家劳厄证实了X射线是一种电磁波,或者说是一种光。后来,科学家还测出了X光的波长,并把它用于医学、金属探伤、研究物质分子和结晶结构等众多领域。
伦琴发现X射线以后,世界曾掀起一股研究X射线的热潮。当时,不少人认为荧光来源于X射线。为了证实这点,法国物理学家贝克勒尔做了一个有趣的实验:他用一种晶体铀盐作为荧光物质,放在阳光下照射。然后把它拿进暗室,放在用黑纸包好的照相底片上,结果,密封的底片感光了。贝克勒尔认为,荧光中真的含有X射线。为此,他准备重复几次实验,确实验证后,再公布他的实验结果。意想不到的是,天公不做美,一连几天的阴雨天,使贝克勒尔难以完成他的实验。他懊丧地从抽屉里取出样品,把底片冲洗出来以检查纸包是否漏光,然而,一个现象使他大吃一惊:照相底片居然被感光了,而且感光影像正好是铀盐的像。荧光物质没见阳光,不会发出射线,也就是说,底片感光与荧光无关,底片的感光必定另有原因。
经过反复实验,贝克勒尔发现,只要把铀盐和照相底片放在一起,不管在多么黑暗的地方,底片都会感光。贝克勒尔断定,含铀的物质能自发地产生一种射线,这种射线是不同于X射线的新射线,它同样可使底片感光。这是科学界最早发现的放射性现象,铀也是人们发现的第一个放射性元素。
贝克勒尔发现放射性的消息公布以后,立刻引起了一对从事科学研究的年轻夫妇的注意,他们就是人们熟悉而尊敬的居里夫妇。
含铀物质为什么会放出射线?这种射线有什么性质?是否只有铀能放出射线?别的物质能不能放出其他射线呢?带着这些问题,居里夫妇花了三年多时间,从几吨沥青铀矿中分离出了比铀放射性强400倍的新元素钋。不久,他们又发现了另一种放射性化合物。9年以后,在居里去世后的第二年,居里夫人终于异常艰苦地从30吨铀沥青残渣中提炼出01克镭盐,并确定了镭的放射性比铀强200多万倍。
钋和镭的发现,不仅给科学界提供了两种用途广泛的放射性元素,而且给人们提供了一种提炼制取放射性元素的方法。居里夫妇因而也在科学史上写下了光辉的一页。
放射性物质每时每刻都在不停地向外放出射线,这些射线又是由什么构成的呢?解开这个谜的是英国物理学家卢瑟福。
卢瑟福把铀、镭之类的放射性元素放进一个铅制容器中,容器上端有个小孔。由于铅能阻挡放射线,所以只能从容器的小孔中放出一束射线。卢瑟福把一块磁力很强的磁铁放在小孔附近,于是放射线受磁铁的不同作用分成三束:一束是不受磁铁影响,穿透力较强的γ射线,一束在磁场作用下发生偏转的α射线,还有一束与α射线偏转方向相反,偏转角度最大的β射线。
α射线、β射线、γ射线都来自原子内部。原子放出α射线或β射线后,变成了另一种新的原子。原子既不是不可分的,也不是一成不变的。放射性的发现,使人们开始步入神秘的原子世界,开创了科学研究的新纪元。
大汶口文化是新石器时代文化。因山东省泰安市大汶口遗址而得名。分布地区东至黄海之滨,西至鲁西平原东部,北达渤海南岸,南到江苏淮北一带,基本处于古籍中记载的少昊氏文化地区。另外该文化类型的遗址在河南和皖北亦有发现。据放射性碳素断代并校正后得出数据,大汶口文化年代距今约6500—4500年,延续时间约2000年左右。根据地层叠压关系和遗物特征,可以区分为早、中、晚3期。
如果满意,求采纳。
出处泉水首载于《本草拾遗》。1.《嘉佑本草》补出“泉水”条。2.《品汇精要》谓:“穴沙石面出者,谓之泉水……凿地取水曰井。夫井亦泉耳。用:新汲者。”3.《纲目》记载:“出巖泉水,此山巖土石间所出泉,流为溪涧者也……其泉源远清冷,或山有玉石美草木者为良;其山有黑土毒石恶草者不可用。”古本草认为新汲的、未被污染的井泉水均有某种医疗价值拼音名QuánShuǐ来源药材基源:为未受污染的天然井泉中新汲水或矿泉水。拉丁植物动物矿物名:Water原形态水为无色透明液体。天然井泉水均含微量元素和盐类等杂质。生境分布主产青岛、广东、贵州;其他省亦有产。性状显微鉴别本品为透明的澄明液体,无色,有时具有极少量矿物盐沉淀。无异臭,无异味,具有矿泉水的特征性口味。品质标志按《中华人民共和国国家标准》(GB853787)规定:(1)确定饮用天然矿泉水的界限指标(mg/L):锂≥0.2;锶≥0.2;锌≥0.2;溴≥1;碘≥0.2;偏硅酸≥25;硒≥0.01;游离二氧化碳≥250;矿物质≥1000。注:凡符合以上各项指标之一者,可称为饮用天然矿泉水。(2)某些元素和组分的 指标(mg/L):锂<5;锶<5;碘<1;锌<5;铜<1;钡<5;镉<0.01;铬<005;铅<005;汞<0.001;银<0.05;硼(以H3BO3计)<30;硒<0.05;砷<0.05;氟化物(以F计)<2.5;耗氧量(以O2计)<3;硝酸盐(以NO3计)<45;226Ra放射性<1.1Bq/L。(3)污染物指标(mg/L):酚类化合物(以苯酚计)<0.002;氰化物(以CN计)<0.01;亚硝酸盐
详见百科词条:泉水 [ 最后修订于2009/12/8 0:42:50 共1047字 ] 以下结果自动匹配而成,不排除出现与主题不相关的内容,请自行区分。
元素周期律中哪些是放射性元素
本文2023-10-17 03:45:42发表“古籍资讯”栏目。
本文链接:https://www.yizhai.net/article/139573.html