中国古代提到天文学的典籍是哪一本著作

栏目:古籍资讯发布:2023-10-18浏览:2收藏

中国古代提到天文学的典籍是哪一本著作,第1张

我国古代天文学有非常高的成就,自然会有浩如烟海的专著。提问中特制某一本著作,是不合理的。

就我一名理科生浅薄的见解,至少有以下几类:

《二十四史》对天文志,五行志,律历志等等。当然,名字可能会略有不同,比如大名鼎鼎的《史记》的天文志就叫做《天官书》。

天文历法专著,古代历法精度有限,一般用上十几二十年就要重修。比较有名的往往是在历算中有所突破的精品,比如《三统历》、《乾象历》、《皇极历》、《大衍历》等等。

天文星占著作,最有名的是两部,《甘石星经》和《开元星占》,诚然其中很多占卜的内容今天不值得提倡,不过其中对于星表的记录,五行的运动规律这些资料是弥足珍贵的。

天文仪器的使用注释,比如汉代的《浑天仪注》,宋代的《新仪象法要》,清代的《灵台仪象志》都是比较有名的。

科学专著,比如沈括的《梦溪笔谈》就有不少涉及天文学或者天文仪器的内容。

类书,类似于《永乐大典》、《四库全书》之类的官修大类书不可能没有天文学的内容。

大爆炸后的膨胀过程是一种引力和斥力之争,爆炸产生的动力是一种斥力,它使宇宙中的天体不断远离;天体间又存在万有引力,它会阻止天体远离,甚至力图使其互相靠近。引力的大小与天体的质量有关,因而大爆炸后宇宙的最终归宿是不断膨胀,还是最终会停止膨胀并反过来收缩变小,这完全取决于宇宙中物质密度的大小。

理论上存在某种临界密度。如果宇宙中物质的平均密度小于临界密度,宇宙就会一直膨胀下去,称为开宇宙;要是物质的平均密度大于临界密度,膨胀过程迟早会停下来,并随之出现收缩,称为闭宇宙。

问题似乎变得很简单,但实则不然。理论计算得出的临界密度为5×10-30克/厘米3。但要测定宇宙中物质平均密度就不那么容易了。星系间存在广袤的星系间空间,如果把目前所观测到的全部发光物质的质量平摊到整个宇宙空间,那么,平均密度就只有2×10-31克/厘米3,远远低于上述临界密度。

然而,种种证据表明,宇宙中还存在着尚未观测到的所谓的暗物质,其数量可能远超过可见物质,这给平均密度的测定带来了很大的不确定因素。因此,宇宙的平均密度是否真的小于临界密度仍是一个有争议的问题。不过,就目前来看,开宇宙的可能性大一些。

恒星演化到晚期,会把一部分物质(气体)抛入星际空间,而这些气体又可用来形成下一代恒星。这一过程会使气体越耗越少,以致最后再没有新的恒星可以形成。1014年后,所有恒星都会失去光辉,宇宙也就变暗。同时,恒星还会因相互作用不断从星系逸出,星系则因损失能量而收缩,结果使中心部分生成黑洞,并通过吞食经过其附近的恒星而长大。

1017~1018年后,对于一个星系来说只剩下黑洞和一些零星分布的死亡了的恒星,这时,组成恒星的质子不再稳定。当宇宙到1024岁时,质子开始衰变为光子和各种轻子。1032岁时,这个衰变过程进行完毕,宇宙中只剩下光子、轻子和一些巨大的黑洞。

10100年后,通过蒸发作用,有能量的粒子会从巨大的黑洞中逸出,并最终完全消失,宇宙将归于一片黑暗。这也许就是开宇宙末日到来时的景象,但它仍然在不断地、缓慢地膨胀着。

闭宇宙的结局又会怎样呢?闭宇宙中,膨胀过程结束时间的早晚取决于宇宙平均密度的大小。如果假设平均密度是临界密度的2倍,那么根据一种简单的理论模型,经过400~500亿年后,当宇宙半径扩大到目前的2倍左右时,引力开始占上风,膨胀即告停止,而接下来宇宙便开始收缩。

以后的情况差不多就像一部宇宙影片放映结束后再倒放一样,大爆炸后宇宙中所发生的一切重大变化将会反演。收缩几百亿年后,宇宙的平均密度又大致回到目前的状态,不过,原来星系远离地球的退行运动将代之以向地球接近的运动。再过几十亿年,宇宙背景辐射会上升到400开,并继续上升,于是,宇宙变得非常炽热而又稠密,收缩也越来越快。

在坍缩过程中,星系会彼此并合,恒星间碰撞频繁。一旦宇宙温度上升到4000开,电子就从原子中游离出来;温度达到几百万度时,所有中子和质子从原子核中挣脱出来。很快,宇宙进入“大暴缩”阶段,一切物质和辐射极其迅速地被吞进一个密度无限高、空间无限小的区域,回复到大爆炸发生时的状态。

如果宇宙真的是大爆炸产生的,目前的平均密度是对的,依照现在的理论是可以测出来的,这个值大约在150亿到200亿光年,而现在观测到的最远距离是美国观测到的150亿光年。 霍金无边界条件的量子宇宙论

霍金在1982年提出了一种既自洽又自足的量子宇宙论。在这个理论中,宇宙中的一切在原则上都可以单独地由物理定律预言出来,而宇宙本身是从无中生有而来的。这个理论建立在量子理论的基础之上,涉及到量子引力论等多种知识。

在他的理论中,宇宙的诞生是从一个欧氏空间向洛氏时空的量子转变,这就实现了宇宙的无中生有的思想。这个欧氏空间是一个四维球。在四维球转变成洛氏时空的最初阶段,时空是可由德西特度规来近似描述的暴涨阶段。然后膨胀减缓,再接着由大爆炸模型来描写。这个宇宙模型中空间是有限的,但没有边界,被称作封闭的宇宙模型。

从霍金提出这个理论之后,几乎所有的量子宇宙学研究都是围绕着这个模型展开。这是因为它的理论框架只对封闭宇宙有效。

如果人们不特意对空间引入人为的拓扑结构,则宇宙空间究竟是有限无界的封闭型,还是无限无界的开放型,取决于当今宇宙中的物质密度产生的引力是否足以使宇宙的现有膨胀减缓,以至于使宇宙停止膨胀,最后再收缩回去。这是关系到宇宙是否会重新坍缩或者无限膨胀下去的生死攸关的问题。

可惜迄今的天文观测,包括可见的物质以及由星系动力学推断的不可见物质,其密度总和仍然不及使宇宙停止膨胀的1/10。不管将来进一步的努力是否能观测到更多的物质,无限膨胀下去的开放宇宙的可能性仍然呈现在人们面前。

可以想象,许多人曾尝试将霍金的封闭宇宙的量子论推广到开放的情形,但始终未能成功。今年2月5日,霍金及图鲁克在他们的新论文“没有假真空的开放暴涨”中才部分实现了这个愿望。他仍然利用四维球的欧氏空间,由于四维球具有最高的对称性,在进行解析开拓时,也可以得到以开放的三维双曲面为空间截面的宇宙。这个三维双曲面空间遵循爱因斯坦方程继续演化下去,宇宙就不会重新收缩,这样的演化是一种有始无终的过程。

物质现象的总和。广义上指无限多样、永恒发展的物质世界,狭义上指一定时代观测所及的最大天体系统。后者往往 称作可观 测宇宙 、我们 的宇宙 ,现在 相当于天文学中的“总星系”。

词源考察 在中国古籍中最早使用宇宙这个词的是《庄子·齐物论》。“宇”的含义包括各个方向,如东西南北的一切地点。“宙”包括过去、现在、白天、黑夜,即一切不同的具体时间。战国末期的尸佼说:“四方上下曰宇,往古来今曰宙。”“宇”指空间,“宙”指时间,“宇宙”就是时间和空间的统一。后来“宇宙”一词便被用来指整个客观实在世界。与宇宙相当的概念有“天地”、“乾坤”、“六合”等,但这些概念仅指宇宙的空间方面。《管子》的“宙合”一词,“宙”指时间,“合”(即“六合”)指空间 ,与“宇宙”概念最接近。

在西方 ,宇宙这个词在英语中叫 cosmos ,在俄语中叫кocMoc ,在德语中叫 kosmos , 在法语中叫 cosmos 。它们都源自希腊语的κoσμoζ,古希腊人认为宇宙的创生乃是从浑沌中产生出秩序来,κoσμoζ其原意就是秩序。但在英语中更经常用来表示 “宇宙”的词是 universe 。此词与universitas有关。在中世纪,人们把沿着同一方向朝同一目标共同行动的一群人称为universitas。在最广泛的意义上 , universitas 又指一切现成的东西所构成的统一 整体,那就是universe,即宇宙。universe 和cosmos常 常表示相同的意义,所不同的是,前者强调的是物质现象的总和,而后者则强调整体宇宙的结构或构造。

宇宙观念的发展 宇宙结构观念的发展 远古时代,人们对宇宙结构的认识处于十分幼稚的状态,他们通常按照自己的生活环境对宇宙的构造作了幼稚的推测。在中国西周时期,生活在华夏大地上的人们提出的早期盖天说认为,天穹像一口锅,倒扣在平坦的大地上;后来又发展为后期盖天说,认为大地的形状也是拱形的 。 公元前 7 世纪 ,巴比伦人认为,天和地都是拱形的,大地被海洋所环绕,而其中央则是高山。古埃及人把宇宙 想 象成以天为盒盖 、大地为盒 底的大盒子,大地的中央则是尼罗河。古印度人想象圆盘形的大地负在几只大象上,而象则站在巨大的龟背上,公元前 7 世纪末,古希腊的泰勒斯认为,大地是浮在水面上的巨大圆盘,上面笼罩着拱形的天穹。

最早认识到大地是 球 形的是古希腊人 。公元前 6 世纪,毕达哥拉斯从美学观念出发,认为一切立体图形中最美的是球形,主张天体和我们所居住的大地都是球形的。这一观念为后来许多古希腊学者所继承,但直到1519~1522年,葡萄牙的F麦哲伦率领探险队完成了第一次环球航行后 ,地球是球形的观念才最终证实。

公元2世纪,C托勒密提出了一个完整的地心说。这一学说认为地球在宇宙的中央安然不动,月亮、太阳和诸行星以及最外层的恒星天都在以不同速度绕着地球旋转。为了说明行星视运动的不均匀性,他还认为行星在本轮上绕其中心转动,而本轮中心则沿均轮绕地球转动。地心说曾在欧洲流传了1000多年。1543年,N哥白尼提出科学的日心说,认为太阳位于宇宙中心,而地球则是一颗沿圆轨道绕太阳公转的普通行星。1609年,J开普勒揭示了地球和诸行星都在椭圆轨道上绕太阳公转,发展了哥白尼的日心说,同年,G伽利略则率先用望远镜观测天空,用大量观测事实证实了日心说的正确性。1687年,I牛顿提出了万有引力定律,深刻揭示了行星绕太阳运动的力学原因,使日心说有了牢固的力学基础。在这以后,人们逐渐建立起了科学的太阳系概念。

在哥白尼的宇宙图像中,恒星只是位于最外层恒星天上的光点。1584年,G布鲁诺大胆取消了这层恒星天,认为恒星都是遥远的太阳。18世纪上半叶,由于E哈雷对恒星自行的发展和J布拉得雷对恒星遥远距离的科学估计,布鲁诺的推测得到了越来越多人的赞同。18世纪中叶,T赖特、I康德和JH朗伯推测说,布满全天的恒星和银河构成了一个巨大的天体系统。FW赫歇尔首创用取样统计的方法,用望远镜数出了天空中大量选定区域的星数以及亮星与暗星的比例,1785年首先获得了一幅扁而平、轮廓参差、太阳居中的银河系结构图,从而奠定了银河系概念的基础。在此后一个半世纪中,H沙普利发现了太阳不在银河系中心、JH奥尔特发现了银河系的自转和旋臂,以及许多人对银河系直径、厚度的测定,科学的银河系概念才最终确立。

18世纪中叶,康德等人还提出,在整个宇宙中,存在着无数像我们的天体系统(指银河系)那样的天体系统。而当时看去呈云雾状的“星云”很可能正是这样的天体系统。此后经历了长达170年的曲折的探索历程,直到1924年,才由EP哈勃用造父视差法测仙女座大星云等的距离确认了河外星系的存在。

近半个世纪,人们通过对河外星系的研究,不仅已发现了星系团、超星系团等更高层次的天体系统,而且已使我们的视野扩展到远达200亿光年的宇宙深处。

宇宙演化观念的发展 在中国,早在西汉时期,《淮南子·俶真训》指出:“有始者,有未始有有始者,有未始有夫未始有有始者”,认为世界有它的开辟之时,有它的开辟以前的时期,也有它的开辟以前的以前的时期。《淮南子·天文训》中还具体勾画了世界从无形的物质状态到浑沌状态再到天地万物生成演变的过程。在古希腊,也存在着类似的见解。例如留基伯就提出,由于原子在空虚的空间中作旋涡运动,结果轻的物质逃逸到外部的虚空,而其余的物质则构成了球形的天体,从而形成了我们的世界。

太阳系概念确立以后,人们开始从科学的角度来探讨太阳系的起源。1644年,R笛卡尔提出了太阳系起源的旋涡说;1745年,GLL布丰提出了一个因大彗星与太阳掠碰导致形成行星系统的太阳系起源说;1755年和1796年,康德和拉普拉斯则各自提出了太阳系起源的星云说。现代探讨太阳系起源z的新星云说正是在康德-拉普拉斯星云说的基础上发展起来。

1911年,E赫茨普龙建立了第一幅银河星团的颜色星等图;1913年 ,HN 罗素则绘出了恒星的光谱-光度图,即赫罗图 。罗素在获 得 此 图后便提出了一个恒星从红巨星开始,先收缩进入主序 ,后沿主序下滑,最终成为红矮星的恒星演化学说 。 1924 年 ,A S 爱丁顿 提 出了恒 星 的质光关系;1937~1939年,CF魏茨泽克和贝特揭示了恒星的能源来自于氢聚变为氦的原子核反应 。这两个发现导致了罗素理论被否定,并导致了科学 的恒星演化理论的诞生。对于星系起源的研究,起步较迟,目前普遍认为 ,它是我们的宇宙开始形成的后期由原星系演化而来的。

1917年,A爱因斯坦运用他刚创立的广义相对论建立了一个“静态、有限、无界”的宇宙模型,奠定了现代宇宙学的基础。1922年,GD弗里德曼发现,根据爱因斯坦的场方程,宇宙不一定是静态的,它可以是膨胀的,也可以是振荡的。前者对应于开放的宇宙,后者对应于闭合的宇宙。1927年,G勒梅特也提出了一个膨胀宇宙模型。1929年,哈勃发现了星系红移与它的距离成正比 ,建立了著 名的 哈 勃定律。这一发现是对膨胀宇宙模型的有力支持。20世纪中叶,G伽莫夫等人提出了热大爆炸宇宙模型,他们还预言,根据这一模型,应能观测到宇宙空间目前残存着温度很低的背景辐射。1965年微波背景辐射的发现证实了伽莫夫等人的预言。从此,许多人把大爆炸宇宙模型看成标准宇宙模型。1980年,美国的古斯在热大爆炸宇宙模型的 基础上又进一步提出了暴涨宇宙模型。这一模型可以解释目前已知的大多数重要观测事实。

宇宙图景 当代天文学的研究成果表明,宇宙是有层次结构的、物质形态多样的、不断运动发展的天体系统。

层次结构 行星是最基本的天体系统。太阳系中共有九大行星:水星、金星、地球 、火星 、木星 、土星 、天王星、海王星和冥王星。除水星和金星外,其他行星都有卫星绕其运转,地球有一个卫星——月球,土星的卫星最多,已确认的有17颗。行星、小行星、彗星和流星体都围绕中心天体太阳运转,构成太阳系。太阳占太阳系总质量的 9986%,其直径约140万千米,最大的行星木星的直径约 14万千米。太阳系的大小约 120 亿千米。有证据表明,太阳系外也存在其他行星系统。2500亿颗类似太阳的恒星和星际物质构成更巨大的天体系统——银河系。银河系中大部分恒星和星际物质集中在一个扁球状的空间内 ,从侧 面 看很像一个“铁饼”,正面看去�则呈旋涡状。银河系的直径约10万光年,太阳位于银河系的一个旋臂中,距银心约 3万光年 。银河系外还有许多类似的天体系统,称为河外星系,常简称星系。现已观测到大约有10亿个。星系也聚集成大大小小的集团,叫星系团。平均而言,每个星系团约有百余个星系,直径达上千万光年。现已发现上万个星系团。包括银河系在内约40个星系构成的一个小星系团叫本星系群。若干星系团集聚在一起构成更大、更高一层次的天体系统叫超星系团。超星系团往往具有扁长的外形,其长径可达数亿光年。通常超星系团内只含有几个星系团,只有少数超星系团拥有几十个星系团。本星系群和其附近的约50个星系团构成的超星系团叫做本超星系团。目前天文观测范围已经扩展到 200亿光年的广阔空间,它称为总星系。

多样性 天体千差万别,宇宙物质千姿百态。太阳系天体中,水星、金星表面温度约达700K,遥远的冥王星向日面的温度最高时也只有 50K ;金星表面笼罩着浓密的二氧化碳大气和硫酸云雾,气压约50个大气压,水星、火星表面大气却极其稀薄,水星的大气压甚至小于2×10-9毫巴;类地行星(水星、金星、火星)都有一个固体表面,类木行星却是一个流体行星;土星的平均密度为 070克/厘米3 ,比水的密度还小 ,木星 、天王星 、海王星的平均密 度略大于水的密度,而水星 、 金星 、 地 球等的密 度则达到水的密度的5倍以上;多数行星都是顺向自转,而金星是逆向自转;地球表面生机盎然,其他行星则是空寂荒凉的世界。

太阳在恒星世界中是颗普遍而又典型的恒星。已经发现,有些红巨星的直径为太阳直径的几千倍 。中子星直径只有太阳的几万分之一 ; 超 巨星的光 度高达太阳光度的数百万倍,白矮星光度却不到太阳的几十万分之一 。红超巨星的物质密度小到只有水的密度的百万分之一 ,而白矮星、中子星的密度分别可高达水的密度的十万倍和百万亿倍 。太阳的表面温度约为6000K,O型星表面温度达 30000 K ,而红外星的表面温度只有约 600 K 。太阳的普遍磁场强度平均为1×10-4特斯拉,有些磁白矮星的磁场通常为几千 、几万高斯( 1高斯=10-4特斯拉 ) ,而脉冲星的磁场强度可高达十万亿高斯。有些恒星光度基本不变 , 有些恒星光度在不断变化 , 称变星。有的变星光度变化是有周期的,周期从 1 小时到几百天不等。有些变星的光度变化是突发性的,其中变化最剧烈的是新星和超新星,在几天内,其光度可增加几万倍甚至上亿倍。

恒星在空间常常聚集成双星或三五成群的聚星,它们可能占恒星总数的1/3。也有由几十、几百乃至几十万个恒星聚在一起的星团。宇宙物质除了以密集形式形成恒星、行星等之外,还以弥漫的形式形成星际物质。星际物质包括星际气体和尘埃,平均每立方厘米只有一个原子,其中高度密集的地方形成形状各异的各种星云。宇宙中除发出可见光的恒星、星云等天体外,还存在紫外天体、红外天体 、X 射线源、γ射线源以及射电源。

星系按形态可分为椭圆星系、旋涡星系、棒旋星系、透镜星系和不规则星系等类型。60年代又发现许多正在经历着爆炸过程或正在抛射巨量物质的河外天体,统称为活动星系,其中包括各种射电星系、塞佛特星系、N 型星系 、马卡良星系、蝎虎座BL型天体,以及类星体等等。许多星系核有规模巨大的活动:速度达几千千米/秒的气流,总能量达 1055焦耳的能量输出,规模巨大的物质和粒子抛射,强烈的光变等等。在宇宙中有种种极端物理状态:超高温、超高压、超高密、超真空、超强磁场、超高速运动、超高速自转、超大尺度时间和空间、超流、超导等。为我们认识客观物质世界提供了理想的实验环境。

运动和发展 宇宙天体处于永恒的运动和发展之中,天体的运动形式多种多样,例如自转、各自的空间运动(本动)、绕系统中心的公转以及参与整个天体系统的运动等。月球一方面自转一方面围绕地球运转,同时又跟随地球一起围绕太阳运转。太阳一方面自转,一方面又向着武仙座方向以20千米/秒的速度运动,同时又带着整个太阳系以 250千米/秒的速度绕银河系中心运转,运转一周约需 22 亿年。银河系也在自转,同时也有相对于邻近的星系的运动。本超星系团也可能在膨胀和自转。总星系也在膨胀。

现代天文学已经揭示了天体的起源和演化的历程。当代关于太阳系起源学说认为,太阳系很可能是50亿年前银河系中的一团尘埃气体云(原始太阳星云)由于引力收缩而逐渐形成的(见太阳系起源)。恒星是由星云产生的,它的一生经历了引力收缩阶段、主序阶段、红巨星阶段、晚期阶段和临终阶段 。 星系的起源和宇宙起源密切相关 , 流行的看法是:在宇宙发生热大爆炸后40万年,温度降到 4000K,宇宙从辐射为主时期转化为物质为主时期,这时或由于密度涨落形成的引力不稳定性,或由于宇宙湍流的作用而逐步形成原星系,然后再演化为星系团和星系。热大爆炸宇宙模型描绘了我们的宇宙的起源和演化史:我们的宇宙起源于 200 亿年前的一次大爆炸,当时温度极高、密度极大。随着宇宙的膨胀,它经历了从热到冷、从密到稀、从辐射为主时期到物质为主时期的演变过程,直至10~20亿年前,才进入大规模形成星系的阶段,此后逐渐形成了我们当今看到的宇宙。1980年提出的暴涨宇宙模型则是热大爆炸宇宙模型的补充。它认为在宇宙极早期,在我们的宇宙诞生后约10-36秒的时候,它曾经历了一个暴涨阶段。

哲学分析 宇宙概念 有些宇宙学家认为,我们的宇宙是唯一的宇宙;大爆炸不是在宇宙空间的哪一点爆炸,而是整个宇宙自身的爆炸。但是,新提出的暴涨模型表明,我们的宇宙仅是整个暴涨区域的非常小的一部分,暴涨后的区域尺度要大于1026厘米,而那时我们的宇宙只有 10厘米。还有可能这个暴涨区域是一个更大的始于无规则混沌状态的物质体系的一部分。这种情况恰如科学史上人类的认识从太阳系宇宙扩展到星系宇宙,再扩展到大尺度宇宙那样,今天的科学又正在努力把人类的认识进一步向某 种 探 索中的“ 暴涨宇宙”、“无规则的混沌宇宙”推移。我们的宇宙不是唯一的宇宙,而是某种更大的物质体系的一部分,大爆炸不是整个宇宙自身的爆炸 ,而是那个更大物质体系的一部分的 爆 炸。因此,有必要区分哲学和自然科学两个不同层次的宇宙概念。哲学宇宙概念所反映的是无限多样 、永恒发 展的 物 质世界;自然科学宇宙概念所涉及的则是人类在一定时代观测所及的最大天体系统。两种宇宙概念之间的关系是一般和个别的关系。随着自然科学宇宙概念的发展,人们将逐步深化和接近对无限宇宙的认识。弄清两种宇宙概念的区别和联系,对于坚持马克思主义的宇宙 无限论 ,反对宇 宙有限论 、神创论、机械论、不可知论、哲学代替论和取消论,都有积极意义。

宇宙的创生 有些宇宙学家认为,暴涨模型最彻底的改革也许是观测宇宙中所有的物质和能量从无中产生的观点,这种观点之所以在以前不能为人们接受,是因为存在着许多守恒定律,特别是重子数守恒和能量守恒。但随着大统一理论的发展,重子数有可能是不守恒的,而宇宙中的引力能可粗略地说是负的,并精确地抵消非引力能,总能量为零。因此就不存在已知的守恒律阻止观测宇宙从无中演化出来的问题。这种“无中生有”的观点在哲学上包括两个方面:①本体论方面。如果认为“无”是绝对的虚无,则是错误的。这不仅违反了人类已知的科学实践,而且也违反了暴涨模型本身。按照该模型,我们所研究的观测宇宙仅仅是整个暴涨区域的很小的一部分,在观测宇宙之外并不是绝对的“无” 。现在观测宇宙的物质是从假真空状态释放出来的能量转化而来的,这种真空能恰恰是一种特殊的物质和能量形式,并不是创生于绝 对 的“ 无 ”。如果进 一 步 说 这 种真空能 起源于“无”,因而整个观测宇宙归根到底起源于“无”,那么这个“无”也只能是一种未知的物质和能量形式。②认识论和方法论方面。暴涨模型所涉及的宇宙概念是自然科学的宇宙概念。这个宇宙不论多么巨大,作为一个有限的物质体系 ,也有其产生、发展和灭亡的历史。暴涨模型把传统的大爆炸宇宙学与大统一理论结合起来,认为观测宇宙中的物质与能量形式不是永恒的,应研究它们的起源。它把“无”作为一种未知的物质和能量形式,把“无”和“有”作为一对逻辑范畴,探讨我们的宇宙如何从“无”——未知的物质和能量形式,转化为“有”——已知的物质和能量形式,这在认识论和方法论上有一定意义。

时空起源 有些人认为,时间和空间不是永恒的,而是从没有时间和没有空间的状态产生的。根据现有的物理理论,在小于10-43秒和10-33厘米的范围内,就没有一个“钟”和一把“尺子”能加以测量,因此时间和空间概念失效了,是一个没有时间和空间的物理世界。这种观点提出已知的时空形式有其适用的界限是完全正确的。正像历史上的牛顿时空观发展到相对论时空观那样,今天随着科学实践的发展也必然要求建立新的时空观。由于在大爆炸后10-43秒以内,广义相对论失效,必须考虑引力的量子效应,因此有些人试图通过时空的量子化的途径来探讨已知的时空形式的起源。这些工作都是有益的,但我们决不能因为人类时空观念的发展或者在现有的科学技术水平上无法度量新的时空形式,而否定作为物质存在形式的时间、空间的客观存在。

人和宇宙 从本世纪60年代开始,由于人择原理的提出和讨论,出现了人类存在和宇宙产生的关系问题。人择原理认为 ,可 能存在许多具有不同物理 参数和初始条件的宇宙,但只有物理参数和初始条件取特定值的宇宙才能演化出人类,因此我们只能看到一种允许人类存在的宇宙。人择原理用人类的存在去约束过去可能有的初始条件和物理定律,减少它们的任意性,使一些宇宙学现象得到解释,这在科学方法论上有一定的意义。但有人提出,宇宙的产生依赖于作为观测者的人类的存在 。 这种观点值得商榷 。 现在根据暴涨模型,那些被传统大爆炸模型作为初始条件的状态,有可能从极早期宇宙的演化中产生出来,而且宇宙的演化几乎变得与初始条件的一些细节无关。这样就使上述那种利用初始条件的困难来否定宇宙客观实在性的观点失去了基础。但有些人认为,由于暴涨引起的巨大距离尺度,使得从整体上去观测宇宙的结构成为不可能。这种担心有其理由,但如果暴涨模型正确的话,随着科学实践的发展,一定有可能突破人类认识上的困难。

不能绝对的说是真的还是假的目前关于这个问题还没有确凿的答案

一楼的说法我不敢苟同你的那个说法是爱因思坦的"有界无边"宇宙模型,并非你的什么"独到看法"

世事无绝对,太绝对的说法往往是错误的说法人家霍金都不敢说"至于宇宙自身不断复制,是胡说八道",只是说这是其中一种可能(见<<时间简史>>),况且能量守恒真的是亘古不变的真理吗难道就不能说它是平行宇宙中单一一个的主观幻觉

不过,必须补充的一点是在目前科学界的几种关于宇宙形态的说法中,"平行宇宙说"的确是较冷门的一说,目前最热门的是大爆炸说和爱因思坦的"有界无边"说

对于宇宙模型的探讨,有必要先说清楚“宇宙”这东西

所谓“宇宙”,一般认为它指的是物质现象的总和。广义上指无限多样、永恒发展的物质世界,狭义上指一定时代观测所及的最大天体系统。后者往往 称作可观 测宇宙 、我们 的宇宙 ,现在 相当于天文学中的“总星系”。

词源考察 在中国古籍中最早使用宇宙这个词的是《庄子·齐物论》。“宇”的含义包括各个方向,如东西南北的一切地点。“宙”包括过去、现在、白天、黑夜,即一切不同的具体时间。战国末期的尸佼说:“四方上下曰宇,往古来今曰宙。”“宇”指空间,“宙”指时间,“宇宙”就是时间和空间的统一。后来“宇宙”一词便被用来指整个客观实在世界。与宇宙相当的概念有“天地”、“乾坤”、“六合”

1 中国古代文化常识天文地理

我国领土辽阔广大,总面积约960万平方千米,仅次于俄罗斯、加拿大,居世界第3位,第四位为美国。差不多同整个欧洲面积相等。我国领土的四端为:最东端在黑龙江和乌苏里江的主航道中心线的相交处(135°E多),最西端在帕米尔高原附近(73°E),东西跨经度60多度,东西相距约5000千米,最南端在曾母暗沙(4°N)、最北端在漠河以北黑龙江主航道的中心线上(53°N)多,南北跨纬度约50度,南北相距约5500千米。

我国的海陆位置:亚洲东部、太平洋的西岸。

00我国半球位置:东半球和北半球。

00我国的经纬度位置:我国领土南北跨越的纬度近50度,大部分在温带,小部分在热带,没有寒带。我国领土[1]总面积约960万平方千米,仅次于俄罗斯、加拿大,居世界第3位,第四位为美国。差不多同整个欧洲面积相等。我国领土的四端为:最东端在黑龙江和乌苏里江的主航道中心线的相交处(135°2′30''E),最西端在帕米尔高原附近(73°40′E),最南端在立地暗沙(北纬3度51分00秒,东经112度17分09秒)(英语:Lidi Ansha或Lydi Shoal)为中国南海南沙群岛区域的一座暗沙,是实际上的中国领土的最南端(非位于其东北约15海里的曾母暗沙)。按中华人民共和国行政区划,立地暗沙属于海南省三沙市管辖。最北端在漠河以北黑龙江主航道的中心线上(53°33′N,124°20′E)我国东西跨越经度60多度,最东端的乌苏里江畔和最西端的帕米尔高原高原相差5个时区。

对于中国古代的天文学系统,和西方相比也有自己的特色。中国天文学系统继承了中国哲学系统的天人合一的思想。举个例子,大熊座在中国的天文学中由北斗,文昌,三台三个星官构成。北斗都很熟悉,不多赘述了;文昌就是民间传说中的文曲星,掌管科举考试的天体;三台指的是在现实生活中的科举考试的三个阶段,乡试,会试和殿试三个阶段。完全不同于西方天文学天上都是神明,和人间无关。我个人喜欢使用中国天文学来对莫颗星命名,因为它很有文化内涵而且比较容易记。

但是中国天文学这套体系也制约了中国天文学的发展。比如日月食,根据立法预报它应该有啊,但是没有发生。如果在西方,恐怕是要对历法进行修正了。在中国呢,群臣向皇帝叩首,恭喜皇帝的大恩大德感动了上苍(即使姚崇也干过这样的事)。

2 古代文化常识天文地理的综合性学习

关于中国古代文化的结构分类,各家学派标准不同,分类也不同:有物质与精神两分法;有物质、制度、精神三分法;有物质、制度、行为、心态四分法;还有物质、社会、精神、艺术、语言、风俗六分法等。这些划分尽管层次不一,但都是按照人类创造文化的发展进程由物质到精神、由感性到理性的层次划分的,适用于专业人员的学习研究。中学生学习教材中的中国古代文化,应根据教育功能的不同来划分。

中学语文教材中涉及的古代文化知识,它包括天文、地理、文学艺术、哲学宗教、政区历法、军事刑律、阴阳五行、家族礼法、音乐美术、饮食服装、车马冠盖、文化奠基、政治经济制度、明君贤相的治国方略,以及价值观念、道德情操等等,但由于教材中没有专门论述中国古代文化知识的课文,这些知识都零散地分布在古文典籍之中,教师教学难,学生学习更难,因此,教学时应将分散的古代文化知识根据教育的功能不同梳理归类,每一类下分若干知识点,以课文中的某一古代文化知识点为突破口作分析,成扇面辐射展开,拓宽范围并向纵深发展。然后再探讨下一个知识点。这样做有三个好处:一是将课文中零散的知识归类成系统,建立知识链条。二是教师们在传播零散的古代文化知识时可以采用专题讲座的方法。三是给学生提供一种研究性学习的方法,打开思路,养成良好的治学习惯。

3 中国古代文化常识天文地理

现在人们对地球的形状已有了一个明确的认识:地球并不是一个正球体,而是一个两极稍扁,赤道略鼓的不规则球体。

但得到这一正确认识却经过了相当漫长的过程。在我国,早在二千多年前的周朝,就存在着一种“天圆如张盖、地方如棋局”的盖天说。

随着生产技术的发展,人类活动范围的扩大,于是便有人提出了拱形大地的设想。这就产生了“浑天说”。

著名的汉朝科学家张衡在所作的《浑天仪注》中写道:“浑天如鸡子,天体圆如弹丸,地如鸡中黄,孤居于内,天大而地小。天表里有水,天之包地,犹壳之裹黄。

天地各乘气而立,载水而浮。” 古代中国人:天圆地方→天如斗笠、地如覆盘→地如蛋黄、天如蛋白( 浑天说)。

4 天文历法在古代文化中的重要性

从天人关系的角度探讨了中国古代天文学在社会文化中的作用。

中国古代天文学从早期开始就与敬天的宗教崇拜密不可分。天文观测既是敬天的活动,也是“通天”的手段。

历法对于农业社会来说无疑是十分重要的,因此“观象授时”成为帝王统治的首要政治任务。历法是“君权神授”的“天命”的象征。

改革历法就意味着改变天命,是重大的宗教政治问题。从敬天和观天的宗教天文活动中产生了“法天”的思想。

帝王只要按照历法规定的“月令”治理国家,社会就和谐有序。汉代的董仲舒提出“天人合一”的宗教神学思想,把天文现象当作灾异现象,具有警示人事的作用。

以观天象而占国家大事吉凶的中国占星术因此在中国古代宗教政治中发挥了极其重要的作用。

5 中国古代文化常识

最低027元/天开通百度文库会员,可在文库查看完整内容>

原发布者:chuixuezhui

中国古代文化常识汇总目录:一、人的称谓二、古代职官三、天文历法四、古代地理五、科举制度六、风俗礼仪七、饮食器用八、音乐文娱九、文史典籍十、目录辞书十一古代军制 一、人的称谓 636f7079e79fa5e9819331333433623736直称姓名大致有三种情况:(1)自称姓名或名。如“五步之内,相如请得以颈血溅大王矣”,“庐陵文天祥自序其诗”。(2)用于介绍或作传。如“遂与鲁肃俱诣孙权”,“柳敬亭者,扬之泰州人”。(3)称所厌恶、所轻视的人。如“不幸吕师孟构恶于前,贾余庆献谄于后”。 称字古人幼时命名,成年(男20岁、女15岁)取字,字和名有意义上的联系。字是为了便于他人称谓,对平辈或尊辈称字出于礼貌和尊敬。如称屈平为屈原,司马迁为司马子长,陶渊明为陶元亮,李白为李太白,杜甫为杜子美,韩愈为韩退之,柳宗元为柳子厚,欧阳修为欧阳永叔,司马光为 称号号又叫别号、表号。名、字与号的根本区别是:前者由父亲或尊长取定,后者由自己取定。号,一般只用于自称,以显示某种志趣或抒发某种情感;对人称号也是一种敬称。如:陶潜号五 称谥号古代王侯将相、高级官吏、著名文士等死后被追加的称号叫谥号。如称陶渊明为靖节征士,欧阳修为欧阳文忠公,王安石为王文公,范仲淹为范文正公,王翱为王忠肃公,左光斗为左忠毅公,史可法为史忠烈公,林则徐为林文忠公。而称奸臣秦桧为缪丑则是一种“恶谥”。 称斋名指用斋号或室号来称呼。如南宋诗人杨万里的斋名为诚斋,人们称其为杨诚斋;姚

6 中国古代天文历法发展

中国古代天文历法的演变中国是世界上天文学发达最早的国家之一。

由于生产和生活的需要,人们从远古时期开始就已经对天文现象进行观察,经过世代连续不断的努力,积累了越来越多的天文学知识,并逐渐形成了内容丰富且具有独特风格的天文学体系。中国古代天文学在许多领域曾长期在世界上处于领先的地位,在世界天文学史和中华民族文化史上,都写下了光辉的篇章。

中国古代天文学的最主要组成部分是历法,换一句话说,历法是中国古代天文学的核心。中国古代历法不单纯是关于历日制度的安排,它还包括对太阳、月亮和土、木、火、金、水五大行星的运动及位置的计算;恒星位置的测算;每日午中日影长度和昼夜时间长短的推算;日月交食的预报等等广泛的课题。

从某种意义上讲,中国古代历法的编算相当于近现代编算天文年历的工作。为此,我国古代天文学家展开了一系列的观测与研究活动:譬如对历法诸课题的共同起算点——历元的选定,对一个又一个天文学概念的阐述,对种种天文常数的测算、各种天文数表的编制,对具体推算方法、天体测量方法和数学方法的抉择和改进等等。

这些就构成了中国古代历法的基本框架和主要内容。 当然,中国古代天文学还包涵更广泛的内容,如中国古代特有的、精良的天文仪器的设计与制造,关于宇宙理论的探讨,以及对一系列天象特别是奇异天象的长期系统的观测与记录等,它们与历法一起,组成了中国古代天文学的十分丰富多彩的体系。

中国古代天文学体系经历了发生、发展、完善、没落,最终融入近现代天文学的漫长演变过程。下面我们拟分六个阶段(即如下六节)简要地加以介绍。

西周以前的天文学知识这是一个天文学知识开始萌芽和初步积累的漫长历史时期。由于生产和生活的需要,从对星辰出没、日月运动的观测中,人们逐渐形成了与这些需要密切相关的年、月、日等时间长度的概念,进而产生了初始的历法系统。

由于占卜活动的需要,人们对天象变化、尤其是异常天象的出现,极为关注,这也 了人们对天象观测的重视,并由此逐渐形成了天象记录的传统。这些都给后世的发展以深刻的影响。

一、观象授时时期 我们的祖先,生息在中国辽阔的土地上,人们在自己的生产和生活实践中,逐渐发现日月星辰的升落隐现,自然界寒来暑往,猎物的出没和植物的荣谢等自然现象,对于人类的生存有着密切的关系。所以有意识地观察和认识这些自然现象,以期顺乎自然,求得自身的发展,便成为先民们感兴趣的问题之一,从中也就逐渐萌发出天文学知识的嫩芽。

太阳对人们无疑是至关重要的。古人日出而作,日入而息,就是以太阳的出入作为作息时间的客观依据。

太阳出入造成的明暗交替出现的规律,必定给先民们以极深的感受,于是以太阳出入为周期的“日”,应是他们最早认识到的时间单位。 自然,月亮的圆缺变化,是又一明显的和意义重大的天象。

说它意义重大,是因为月亮的亮光对于人们夜间活动的安排是关键的要素。经过长期的观测和计数,人们逐渐发现月亮圆缺的周期约为30日,这便进而导致一个较长的时间单位“月”的产生。

对于更长一些的时间单位“年”的认识,要较“日”、“月”困难得多,但这是对于人们生产和生活的意义更为重大的一种周期,因为寒暑、雨旱,以及渔猎、采集乃至农业生产活动无一不与它有关。所以,人们对它进行了长期不懈的探索。

由物候——草木枯荣、动物迁徙、出入等的观察入手,大约是探索一年长度的最早方法,随后才是对某些星象的观测。后者所得结果要较前者来得准确。

据传说,在颛顼帝时代,已设立“火正”(1)专司对大火星(心宿二,天蝎座α星)进行观测,以黄昏时分大火星正好从东方地平线上升起时,作为一年的开始,亦即这一年春天的来临。由此不难推得一年的长度。

这是我国古代观象授时的早期形态。据研究,这大约是公元前2400年的事。

又据《尚书·尧典》记载,在传说中的尧帝时,“乃命羲和,钦若昊天,历象日月星辰,敬授人时”。其具体的观测方法与结果是:“日中星鸟,以殷仲春”,“日永星火,以正仲夏”,“宵中星虚,以殷仲秋”,“日短星昴,以正仲冬”,即以观测鸟、火、虚、昴四颗恒星在黄昏时正处于南中天的日子,来定出春分、夏至、秋分和冬至,以作为划分一年四季的标准。

据推算,这大约是公元前2000年时的实际天象。 由上述记载,我们还可以推知,当时已有原始圭表的出现,否则人们就无从确定某星辰南中天的问题。

这时的圭表还仅用于厘定方位,尚未用于测定日影的长度。观测星辰南中天来确定季节,可以减少地平线上的折射和光渗等的影响,其精度自然要比观测星辰出没来得高。

此外,从“日中”和“宵中”(指昼夜平分)、“日永”和“日短”(分别指白昼最长和最短的日子)等说法,可知其时已应用了某种测量时间的器具(这一点由下述《夏小正》的有关记载亦可证)。这些都说明,此时已进入观象授时相当发达的时代。

其标志是:所观测的恒星已由一颗增加到多颗,由观测恒星东升改为南中天,并已使用了某些器具。 更值得注意的是,《尧典》还记述了这时人们已经采用了“期。

7 中国古代天文历法的演变

中国的历法与纪年采用阴阳干支三合历;上古时期,根据不同的农业牧业生产情况需要,分别产生过太阳历法和太阴历法。

农历作为中国传统历法,最早源自何时无从考究,据出土的甲骨文和古代中国典籍多有记载,现时阴阳合一的历法规则一般认为源自殷商时期。从黄帝历法到清朝末期启用西历(公历)始,中国历史上一共产生过102部历法,这些历法中有的曾经对中国文化与文明产生过重大影响,比如夏历、商历、周历、西汉太初历、隋唐大衍历和皇极历等,有的历法虽然没有正式使用过,但对养生、医学、思想学术、天文、数学等起到过重大作用,如西汉末期的三统历和唐朝的皇极历法等。

汉朝以前的古代中国历法以366天为一岁,用“闰月”确定四时和确定岁的终始;已经有日、月、旬和时的时间单位,具备了阴阳历的技术;观察到了五大行星和日月的运动规律,用“闰月”,“减差法”来调整时差;历法实施成为重要大事,主要内容之一是“以闰月定四时成岁”和“正闰余”,即确定闰月位置和如何减去多余出来的天数(不是加上缺少的天数),由此来确定年岁的终结和开始。到了春秋战国时期,由于周朝王室衰落,诸侯各行其是,因此出现多轨制历法,亦即各诸侯和各地部落还有自己的地方历法;秦朝为中国历史上最后一个"以闰月定四时成岁"的历法。

汉朝初期开始中国历法出现了大转折,全国统一历法,历法也成为了一门较为独立的科学技术。汉武帝责成司马迁等人编写了《太初历》,之后刘歆作《三统历》,这两历的重要特点是年岁合一,一年的整数天数是365天,不再之前历法的366天。

以“加差法”替代之前的“减差法”以调整时差,年岁周期起始相当固定,用数学计算就能确定闰月,用不着“考定星历,建立五行”,至此,阴阳五行基本上退出了历法。之后中国历朝颁布的历法,均与太初历大同小异;中华民国成立后,纪年采用西历或民国纪年并用。

8 高考历史中重要的古代文化常识积累,比如阴阳五行,天干地支等

这属于中华民族的传统文化,属于天文历法,因为古代使用干支纪念法,当然现在仍在使用,十二生肖就是和十二地支对应的。

(很不幸的是现代很多小人拿此来算命欺骗老百姓) 五行是中国古代的一种物质观。多用于哲学、中医学和占卜方面。

五行指:金、木、水、火、土。认为大自然由五种要素所构成,随着这五个要素的盛衰,而使得大自然产生变化,不但影响到人的命运,同时也使宇宙万物循环不已。

五行学说认为宇宙万物,都由木火土金水五种基本物质的运行(运动)和变化所构成。它强调整体概念,描绘了事物的结构关系和运动形式。

如果说阴阳是一种古代的对立统一学说,则五行可以说是一种原始的普通系统论。 什么是五行 在中国古代哲学所记载,五行是宇宙万物的基本元素,它们是金、木、水、火、土,而它们之间也存有相生相克的关系。

五行相生:金生水、水生木、木生火、火生土、土生金。 五行相克:金克木、木克土、土克水、水克火、火克金。

五行的性质 木、火、土、金、水五行的各个性质,依次如下: 木-好华美,且具有风雅的个性。木性代表仁,就是又慈爱,又行善的意思。

火-性情急躁,而富有自尊心。火性代表礼,就是为人谦让谨慎,敬上而不欺下。

土-性情温厚笃实,而具有自信心。土性代表信, 就是又诚实又温厚诚恳之意。

金-性情刚强,而具有自尊心。金性代表义,就是崇善弃恶,事事都顺理。

水-人聪明,并能推测事物。水性代表智, 就是观察事物详细,对于任何事能预知前兆,善理权谋术事。

也可以说是仁、义、礼、智、信的五常。 中医五行相生相克图 五脏:木性为肝脏;火性为心脏;土性为脾脏;金性为肺脏;水性为肾脏。

五色:木代表青色;火代表红色;土代表**;金代表白色;水代表黑色。 五行相生相克 五行相生 五行相克 五行相冲 五行相生相克原理 五行有‘五行相生’和‘五行相克’。

‘五行相生’是互相生旺的意思,表示生成化育,‘五行相克’就是互相反驳、互相战斗、制衡。 根据宇宙的磁场原先是浩瀚的大海(水)在海中产生了植物(木)再经由太阳(火)的照射慢慢的有了陆地(土)再从陆地中去发现了铁的矿物质(金)尔后从铁矿中提炼成铁器做成盆子来取水。

这就是大地自然的水生木→木生火→火生土→土生金→金生水的循环状态。 又 裸的大地一定要植树(木),用大树的根来拱固土质大雨来时才不会土质流失(土),大雨会造成水灾就必需用土来筑墙保卫家园(水),古时家园的门口都要摆个大水缸下雨时备水以备火灾可灭火(火),为保卫家园及家中煮饭生火必需有刀枪斧头器具所以要提炼顽铁(金), 生火需要用锯子斧头来劈材(木),这自然的相克制衡道理就是木克土→土克水→水克火→火克金→金克木。

天地间的万物产生之后,虽然有相生但也要有制衡 ,如水会使树木生长,也会使土质流失,而木按照‘木克土’的道理来克土,这就是自然的循环状态。 天干地支,简称“干支”。

在中国古代的历法中,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被称为“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫作“十二地支”。十干和十二支依次相配,组成六十个基本单位,两者按固定的顺序互相配合,组成了干支纪法。

从殷墟出土的甲骨文来看,天干地支在我国古代主要用于纪日,此外还曾用来纪月、纪年、纪时等。 天干地支tiān'gāndìzhī 天干地支产生于汉代,它以立春作为一年的开始而不是以农历的正月初一。

天干地支 天干地支简称“干支”。“辞源”里说,“干支”取义于树木的“干枝”。

十天干:甲(jiǎ)、乙(yǐ)、丙(bǐng)、丁(dīng)、戊(wù)、己(jǐ)、庚(gēng)、辛(xīn)、壬(rén)、癸(guǐ); 十二地支:子(zǐ)、丑(chǒu)、寅(yín)、卯(mǎo)、辰(chén)、巳(sì)、午(wǔ)、未(wèi)、申(shēn)、酉(yǒu)、戌(xū)、亥(hài)(注:十二地支对应十二生肖[1]——子:鼠;丑:牛;寅:虎;卯:兔;辰:龙;巳:蛇; 午:马;未:羊;申:猴;酉:鸡;戌:狗;亥:猪。)。

早在公元前2697年,于中华始祖黄帝建国时,命大挠氏探察天地之气机,探究五行(金木水火土)),始作甲、乙、丙、丁、戊、己、庚、辛、壬、癸十天干,及子(zǐ)、丑(chǒu)、寅(yín)、卯(mǎo)、辰(chén)、巳(sì)、午(wǔ)、未(wèi)、申(shēn)、酉(yǒu)、戌(xū)、亥(hài)十二地支,相互配合成六十甲子用为纪历之符号。根据《五行大义》中记载,干支是大挠创制的。

大挠“采五行之情,占斗机所建,始作甲乙以名日,谓之干,作子丑以名月,谓之枝。有事于天则用日,有事于地则用月。

阴阳之别,故有枝干名也。” 天干地支 我国历法以月球绕地球一周的时间(295306天)为一月,以地球绕太阳一周的时间(3652419 天)为一年,为使一年的平均天数与回归年的天数相符,设置闰月。

据记载,公元前六世纪中国开始采用十九年七闰月法协调阴历和阳历。 天干地支,是古人建历法时,为了方便做60进位而设出的符号。

对古代的中国人而言,天干地支的存在,就像 数字般的单纯,而。

在日全食时,太阳的周围镶著一个红色的环圈,上面跳动着鲜红的火舌,这种火舌状物体就叫做日珥,日珥是在太阳的色球层上产生的一种非常强烈的太阳活动,是太阳活动的标志之一。

日珥是通常发生在色球层的,它像是太阳面的“耳环"一样。大的日珥高于日面几十万千米,还有无数被称为针状体的高温等离子小日珥,针状体高9000多千米,宽约1000千米,平均寿命5分钟。

基本介绍 中文名 :日珥 外文名 :Prominences 属性 :太阳色球层发生的一种太阳活动 特点 :温度高,能量集中爆发 学科 :天文,太阳 简介,别名,研究历史,特征,形成原因,分类,日珥运动,分布,光谱,磁场,观测,2013年,2015年, 简介 太阳大气层里的巨大气体云,比其环绕物浓厚且冷,通常用分光镜就可看见。它们如同火焰般突出在太阳边缘。在结构上,它们显示出巨大的差异。静止日珥在太阳高纬度处可延续数月,典型的可达40000千米高、200000千米长。活动日珥相对来说存在时间较短,并且可在几分钟内改变形状。 别名 日珥是日晕的一种。一般指完整日晕外侧的小段晕弧。 别名 冠珥 《周礼·春官·眂祲》:“四曰监”汉·郑玄注:“监冠珥也。”唐·贾公彦疏:“云‘监冠珥也’者,谓有赤云气在日旁如冠耳。珥即耳也,今人犹谓之日珥。”《晋书·天文志中》:“冠珥背璚,重叠次序,在于日旁也。” 冠冕 唐·韩偓《登南神光寺塔院》诗:“日宫紫气生冠冕,试望扶桑病眼开。” 研究历史 日全食时,用肉眼可以看见火红色的日珥。1842年7月8日日全食的观测,留下了最早的、明确的日珥观测记录。1860年7月 18日日全食时拍摄了日珥的照片。1868年8月18日日全食时,拍到日珥的光谱,确定日珥的主要成分是氢。此外,还在日珥光谱中发现一条波长为5876埃的黄线,但在当时实验室里从未见过这条谱线,遂把发出这种谱线的物质命名为Helium(氦),此字源于希腊语Helios(太阳),意即太阳元素。到1895年,才在实验室里提炼出氦。从二十世纪初期起,天文学家用分光仪等仪器对日珥的光谱、物态、结构、运动、形成、演变等进行了大量的研究。如今空间探测兴起,在地球大气层外拍得了日珥的紫外线和X射线光谱。此外,还对日珥进行了射电观测。 日珥 特征 日珥是突出在日面边缘外面色球层的一种太阳活动现象。它们比太阳圆面暗弱得多,在一般情况下被日晕(即地球大气所散射的太阳光)淹没,不能直接看到。因此必须使用太阳分光仪、单色光观测镜等仪器,或者在日全食时才能观测到。日珥出现时,大气层的色球酷似燃烧着的草原,玫瑰红色的舌状气体如烈火升腾,形状千姿百态,有的如浮云,有的似拱桥,有的像喷泉,有的酷似团团草丛,有的美如节日礼花,而整体看来它们的形状恰似贴附在太阳边缘的耳环,由此得名为“日珥”。 日珥 日珥的爆发最为壮观,爆发前是一团密密实实的“冷气团”,温度只有7000℃,悬浮在100万℃的日冕中。日珥在大小、形状和运动方面差别很大,而且有活动日珥和宁静日珥两种主要类型。活动日珥快速喷发,持续几分钟至几小时。活动日珥和黑子群有关,而且同黑子群一样,在数量和活动上都同太阳活动周期紧密相关。宁静日珥喷发平缓,减退更慢,可延续几个月。 形成原因 日珥的形成问题尚未解决。最难解释的是,大部分日珥在比它们稀薄得多的日冕中存在,常常在几乎是空无一物的日冕中突然浮现出日珥。计算表明,日冕的全部物质都不够凝聚成几个大日珥,因此,日珥的物质基本上来自色球层。如今比较流行的日珥形成理论,认为日珥出现在日冕磁力线的马鞍形凹陷处(图2)。如果由于某种原因,日冕磁力线有局部的凹陷,这时与磁场“冻结”在一起的色球物质沿磁力线运动,会有一部分留存在这样的“磁坑”内,由此形成日珥。从侧面看,由于日珥物质所受的重力与洛伦兹力正好平衡,磁力线可以把日珥支撑住。 分类 按运动情况来看,日珥可分为爆发型、宁静型和活动型这样三大类。如果细分下去可以分为十几类。宁静日珥,在观测时间内似乎是不动的,而活动日珥,则老在不停地变化著。它们从太阳表面喷出来,沿着弧形路线,又慢慢地落回到太阳表面上。但有的日珥喷得很快、很高,它的物质没有落回日面,而是抛射入宇宙空间了,爆发日珥的高度可以达到几十万千米。1938年爆发的一个最大日珥,顷刻间上升到157万千米的高空,而地球的直径不过13万千米。 日珥的分类方式主要有两种: 第一种 分类根据形态和运动的特征,日珥可以分为若干类型。已经提出几种不同的日珥分类法,比较流行的是把日珥分成六大类: 1999年日全食期间拍到的日珥 ①活动日珥, ②爆发日珥, ③黑子日珥(出现在黑子群上空), ④龙卷日珥(象龙卷风一样,具有扭曲形状), ⑤宁静日珥,⑥冕珥(从日冕空间发出的细流状日珥)。每一大类又分为若干小类。分类的界限并不绝对,例如,有的宁静日珥可以突然转变为活动日珥或爆发日珥。 第二种 日珥分为宁静的、活动的以及爆发的三大类。顾名思义,宁静日珥比起另外两种日珥来,显然不够活跃,变化比较缓慢,一般能够在日面存活几天时间,因此能够经常看到宁静日珥。有时宁静日珥甚至可以形状丝毫不变地在日冕中存在数月之久,这简直令人不可思议。日珥的物质密度比日冕高几千倍甚至上万倍,它们的确是色球层里的物质。日冕的温度高达100万~200万K,是什么原因使得温度大约7000K的日珥能在如此高温状态下长期存在呢?它们是怎样产生的?如今这还是一个尚未解决的问题。有很多天文学家都认为是太阳磁场和日珥磁场的作用,导致了日珥的产生和存在。但是,具体的细节,还需要进一步的探讨。 活动日珥比宁静日珥活跃得多,总在不停地变化。它们像喷泉一样,从太阳表面喷出很高,又沿着弧形轨迹慢慢地落回到太阳表面。也有的日珥喷得很快很高,它的物质不再落回到日面,而是抛入宇宙空间了。 最壮观的还数爆发日珥。爆发日珥发生的时候,以每秒700多千米的高速将物质喷发到日冕中,高度达几十万甚至上百万千米,蔚为壮观。天文学家观测到的一次最大的爆发日珥,上升高度竟然高达157万千米,太阳的直径为139万千米,比太阳直径还高。 日珥运动 日珥的运动很复杂,具有许多特征。例如,在日珥不断地向上抛射或落下时,若干个节点的运动轨迹往往是一致的;当日珥离开太阳运动时,速度会不断增加,而这种加速是突发式的,在两次加速之间速度保持不变;在日珥节点突然加速时,亮度也会增加。对于这些现象还没有满意的解释。主要问题是:日珥的密度远大于日冕,但宁静日珥可长期存在于日冕中,既不坠落也不瓦解。是什么力量支撑和维持着它?活动日珥和爆发日珥的速度可高达每秒几百公里,动力从何而来?日珥运动往往突然加速,甚至宁静日珥会一下子转变为活动日珥,原因是什么?这些问题都有待于进一步研究。一般认为,除重力和气体压力外,电磁力在日珥运动中是一个重要因素。日珥运动状态的突变可能与磁场的变化有关。 日珥 分布 日珥在太阳南、北两半球不同纬度处都可能出现,但在每一半球都主要集中于两个纬度区域,而以低纬度区为主。低纬区的日珥的分布与黑子的分布相似,按11年太阳活动周不断漂移。在活动周开始时,日珥发生在30°~40°范围内,然后逐渐移向赤道,在活动周结束时所处的纬度平均约为17°。这比黑子区域的平均纬度始终高10°左右。至于高纬度区,日珥大约在黑子极大期过去三年后才出现,一直存在到黑子极小期。高纬度区的日珥并不漂移,都在45°~50°范围内。上述两个区域的分界约在纬度40°处。 1992年日全食期间拍到的日珥 日珥的数目和面积都与11年的太阳活动周有关,随黑子相对数而变化。但变化幅度没有黑子相对数那样大。 日珥的上升高度约几万公里,大的日珥可高于日面几十万公里,一般长约20万公里,个别的可达150万公里。日珥的亮度要比太阳光球层暗弱得多,所以平时不能用肉眼观测到它,只有在日全食时才能直接看到。 日珥是非常奇特的太阳活动现象,其温度在5000~8000K之间,大多数日珥物质升到一定高度后,慢慢地降落到日面上,但也有一些日珥物质漂浮在温度高达200万K的日冕低层,既不附落,也不瓦解,就像炉火熊熊的炼钢炉内居然有一块不化的冰一样奇怪,而且,日珥物质的密度比日冕高出1000~10000倍,两者居然能共存几个月,实在令人费解。 光谱 通过光谱分析,可以测定日珥的物理参数和化学成分,了解日珥物质的激发和电离状态,建立日珥的结构模型,并研究太阳辐射(尤其是日冕的紫外线和X射线)对日珥的影响。 日珥的光谱包括许多条发射线和暗弱的连续光谱。在可见区,主要的发射线是氢的巴耳末线(从Hα 起,最多已看到约40条线),此外,还有氦以及钙、铁、镁、钛、锶等金属的谱线。利用不同元素的谱线宽度,可求得日珥的温度约为7,000K,湍流速度约4公里/秒。从巴耳末线的数目和谱线轮廓的分析,都可得出日珥的电子密度约为每立方厘米1011个,日珥的物质密度也与此相近。 日珥发射线谱线展宽的主要原因是都卜勒致宽和辐射阻尼;斯塔克效应的作用很小。巴耳末线的前几条以及钙的H、K等强线都受到自吸收的显著影响。日珥的连续光谱主要是从3646埃开始向短波方向延伸的巴耳末连续区。利用连续光谱的能量随波长的分布,也可以推算出日珥的温度和密度。 1973年5月发射的天空实验室,用特制的仪器在280~1350埃拍摄了大量的日珥和暗条光谱。在这个波段范围内的许多条发射线,有的(例如氢的赖曼系)来自日珥的低温(约10-

中国古代提到天文学的典籍是哪一本著作

我国古代天文学有非常高的成就,自然会有浩如烟海的专著。提问中特制某一本著作,是不合理的。就我一名理科生浅薄的见解,至少有以下几类:...
点击下载
热门文章
    确认删除?
    回到顶部