数学解决问题的技巧和方法

栏目:古籍资讯发布:2023-10-21浏览:2收藏

数学解决问题的技巧和方法,第1张

数学解决问题的技巧和方法:(以小学数学为例)

多读题,缓慢读题,读得顺畅、连贯,划出问题,圈出关键词句。

读题有利于学生对问题的理解,有助于通过语言描述看到问题解决的契机。对于问题意义表征受阻的学困生,有必要指导他们从“指读”(用笔尖指着题目,眼睛看着所指的文字读)开始,逐步养成边读边思考,反复读几遍,直至读懂的习惯。

进一步,还可以指导他们划出题中已知的数学信息和所求问题,并在句中圈出关键词。

把“大数”化“小”。

例如,"一本书共369页,平均每天看41页,多少天看完"对有困难的学生,只要将原题改为:"一本书24 页,平均每天看8 页,多少天看完"他们往往能脱口而出“3天”。

再用“小步子”进行追问:用什么方法算怎样列式为什么这样列式这两题有什么相同和不同从而使学生领悟到,两题都是求一个数里面有几个几。

联系生活,想象情境。

让学生想象自己是问题中的“小明”,进入情境,想象自己拿着20元钱去买票。从而增强学生身临其境的感受,有助于解决问题。以上三条策略,其实就是过去的读题、审题策略,现在依然非常实用。

列表、画图。

表、图具有直观形象的特点,可以帮助学生简洁、明了、正确地表征问题,提高解决问题的能力。在用比例知识解决正反比例的问题时,学困生往往不清楚量与量之间的对应关系。可以引导学生列表来帮助理解。

二、体会数学方法和思想 解题后,要注意思考所解题目运用的是那一种数学方法,渗透了什么数学思想,以达到举一反三、触类旁通的目的。常用的数学方法主要有:(1) 配方法 (2) 换元法 (3) 待定系数法 (4 ) 定义法 (5 ) 数学归纳法( 6 ) 参数法( 7) 反证法 (8)构造法 ( 9) 分析与综合法 (10) 特例法 (11 ) 类比与归纳法 。 高中数学常用的数学思想有:(1)数形结合思想(2 )分类讨论思想(3 ) 函数与方程思(4 ) 转化与化归的思想。 经常进行这样的思考和分析,有利于对知识的深刻理解和运用,提高知识的迁移能力。三、一题多解与多题一解在解题时不要仅满足与解决了题目,还要考虑有无其他解法。经常尝试多种解法,可以锻炼我们思维的发散性,培养我们综合运用所学知识解决问题的能力和不断创新的意识。思考解决这道题目的方法还可以解决那些题目。这些题目背景可能千差万别,但解决时所用的数学方法是一样的。这样的思考能帮助我们看清题目的本质,大大提高解题能力。四、题目的变化与拓展 解完一道题目,还可以对它进行适当的变化和拓展。主要可以改变题目条件,包括条件的加强与条件的减弱,条件与结论的交换等。改变题目的结论,主要是结论的深化和延伸。一题多变,有利于开阔眼界,拓宽解题思路,提高应变能力,有效地预防思维定势的负面影响。五、错误的总结与记录 解题后,要思考题中易混易错的地方,总结预防错误的经验和犯错误的教训,有必要的要做好错题记录。把一道题目做好,充分利用好题目的训练功能,久而久之,你就会体会到“题不在多而在精”的道理。

数学做题的方法及技巧

 数学做题的方法及技巧,数学一直都是令许多学生头疼的科目,在考试中我们只能尽量做到不会做的题目也能得分,甚至蒙出正确的答案,只要掌握一定的数学答题技巧,也是有可能实现的,接下来一起看看数学做题的方法及技巧。

数学做题的方法及技巧1

  一、熟悉习题中所涉及的内容,包括定义、公式、定理和规则。

 解题、做练习只是学习过程中的一个环节,而不是学习的全部,你不能为解题而解题。解题是为阅读服务的,是检查你是否读懂了教科书,是否深刻理解了其中的概念、定理、公式和规则,能否利用这些概念、定理、公式和规则解决实际问题。解题时,我们的概念越清晰,对公式、定理和规则越熟悉,解题速度就越快。

 因此,我们在解题之前,应通过阅读教科书和做简单的练习,先熟悉、记忆和辨别这些基本内容,正确理解其涵义的本质,接着马上就做后面所配的练习,一刻也不要停留。

  二、熟悉习题中所涉及到的以前学过的知识,以及与其他学科相关的知识。

 有时候,我们遇到一道不会做的习题,不是我们没有学会现在所要学会的内容,而是要用到过去已经学过的一个公式,而我们却记得不很清楚了;或是需用到一个特殊的定理,而我们却从未学过,这样就使解题速度大为降低。

 这时,我们应先补充一些必须补充的相关知识,弄清楚与题目相关的概念、公式或定理,然后再去解题,否则就是浪费时间,当然,解题速度就更无从谈起了。

  三、熟悉基本的解题步骤和解题方法。

 解题的过程,是一个思维的过程。对一些基本的、常见的问题,前人已经总结出了一些基本的解题思路和常用的解题程序,我们一般只要顺着这些解题的思路,遵循这些解题的步骤,往往很容易找到习题的答案。否则,走了弯路就多花了时间。

数学做题的方法及技巧2

  选择题蒙法

 1、选择题出现数值的选项中,含最多相同数值的选项为正确答案。如四个选项:A、3 B、3/11 C、3/13 D、2/11。“3”和“11”出现的次数最多,故选选项B。

 2、选择题出现数值的选项中,数值最大的和数值最小的一般不是正确选项,答案从中间数值的两个选项中选。

 3、选择题出现正负数值的选项中,答案必定是那两个选项的其中之一。

 4、选择题中,若出现概念题。如果有课外的或是课内很少见的说法,一般都是正确的说法。

 5、选择题,不会连续出现3个相同的答案。一般而言,选项A出现的概率最低。而且,第一题和最后一题一般不为选项A,最后两道题多为选项B和选项C。

  填空题蒙法

 1、如果出现求长度或者求角度的选择题,并且试卷上有图像的。可以直接用刻度尺或者量角器去衡量。

 2、有关线性规划的选择题,不用画图,直接计算。用时更短,准确率更高!

 3、遇上求数值、实在不会做的选择题。如果明显是整数答案的,可以选写“0、1、-1”中的其中一个数值;如果明显是分数答案的,可以选写“1/2、1/3、2/3”中的其中一个数值;如果明显是含根号值数答案的,可以选写“根号2、根号3“等简单的数值。

 4、一般来说,题目复杂难懂的,答案的数值往往是很简单的。反之就是比较复杂的。

  解答题蒙法

 1,证明题中,如果有某一个结论实在不知道怎么推导出来,可以把题目中所有的条件抄一遍,然后直接写出你想要的结论即可(情况好的话一分不扣!情况不好的话,也就扣一些步骤分)

 2,证明题中,第二第三题可以直接引用第一题的结论(即使第一题是要你证明的结论,你没有证明出来也可以用!)

 3、一般而言,压轴题的第三小问,都要用第一小题中的结论。(所以,压轴题的第三小问,即使做不出来,也要把第一小题中的结论写上去,可以得一到两分的步骤分!)

 4、空间几何证明题中,即使不会证明,也要建立空间直角坐标系,并写上你建系时的套话。

 5、实在一点儿都不会做的题目,把所有你觉得用得上的、跟本题有关的公式定理都写上去。并且,每一小题都要重复写上(意思就是:第一小题写了,第二、第三小题也要写!)

数学做题的方法及技巧3

  数学答题技巧

  1适用条件

 [直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。x为分离比,必须大于1。

 注:上述公式适合一切圆锥曲线。如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

  2函数的周期性问题(记忆三个)

 (1)若f(x)=-f(x+k),则T=2k;

 (2)若f(x)=m/(x+k)(m不为0),则T=2k;

 (3)若f(x)=f(x+k)+f(x-k),则T=6k。

 注意点:a周期函数,周期必无限b。周期函数未必存在最小周期,如:常数函数。c周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

  3关于对称问题(无数人搞不懂的问题)总结如下

 (1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2

 (2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;

 (3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称

  4函数奇偶性

 (1)对于属于R上的奇函数有f(0)=0;

 (2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项

 (3)奇偶性作用不大,一般用于选择填空

  5数列爆强定律

 (1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);

 (2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差

 (3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立

 (4)等比数列爆强公式:S(n+m)=S(m)+qmS(n)可以迅速求q

 6数列的终极利器,特征根方程

 首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),

 a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p(n-1)+x,这是一阶特征根方程的运用。

 二阶有点麻烦,且不常用。所以不赘述。希望同学们牢记上述公式。当然这种类型的数列可以构造(两边同时加数)

1学会运用函数与方程思想。

从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。

用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组)。这种思想在代数、几何及生活实际中有着广泛的应用。

直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。

2学会运用数形结合思想。

数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想 数形结合 思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。

纵观近几年全国各地的中考压轴题,绝大部分都是与平面直角坐标系有关,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。

3要学会抢得分点。

一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。如中考数学压轴题一般在大题下都有两至三个小题,难易程度是第1小题较易,大部学生都能拿到分数;第2小题中等,起到承上启下的作用;第3题偏难,不过往往建立在1、2两小题的基础之上。因此,我们在解答时要把第1小题的分数一定拿到,第2小题的分数要力争拿到,第3小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。

中考的评分标准是按照题目所考查的知识点进行评分,解对知识点、抓住得分点就会得分。因此,对于数学中考压轴题尽可能解答“靠近”得分点,最大限度地发挥自己的水平,把中考数学压轴题变成高分踏脚石。

4学会运用等价转换思想。

转化思想是解决数学问题的一种最基本的数学思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。

任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换,一道中考压轴题一般是融代数、几何、三角于一体的综合试题,转换的思路更要得到充分的应用。

中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察,所涉及的知识面广,所使用的数学思想方法也较全面。因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。

5学会运用分类讨论的思想。

分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察,有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。

在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。

分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行正确的分类必须是周全的,既不重复、也不遗漏

数学解决问题的技巧和方法

数学解决问题的技巧和方法:(以小学数学为例)多读题,缓慢读题,读得顺畅、连贯,划出问题,圈出关键词句。读题有利于学生对问题的理解,...
点击下载
热门文章
    确认删除?
    回到顶部