什么是黑洞?

栏目:古籍资讯发布:2023-10-28浏览:3收藏

什么是黑洞?,第1张

早在18世纪末,PSM拉普拉斯根据牛顿引力理论就曾预言,只要天体质量足够大,其引力就有可能强到连自身发出的光都无法逃逸到远处的程度,以致成为看不见的天体。现在,称这类天体为黑洞。显然,由于黑洞的引力极强,只有用广义相对论才能确切地描述。

黑洞具有封闭的边界,光线和其他任何物质都不能越过这个边界跳到外面。这个边界就是黑洞的视界。根据广义相对论,在球对称的引力坍缩过程中,只要坍缩核的质量足够大,就一定坍缩为黑洞。而一旦形成黑洞,就会一直坍缩到奇点。

20世纪60年代以来,彭罗塞等人引入了整体微分几何的方法,在理论上大大推进了有关黑洞和引力坍缩的研究。60年代末,彭罗塞提出了“宇宙信息检查假设”,认为奇点只能出现在黑洞之内,或者说,引力坍缩不可能形成裸奇点,黑洞外面的人看不见。这个猜想虽然有充分的根据,然而,至今并没有得到严格的证明。

超新星爆发后,如质量超过24太阳质量,则平衡状态不再存在,星体将无限制地收缩,星体的半径愈来愈小,密度愈来愈大,最后成为一个体积无限小而密度无穷大的奇点,从人们的视线中消失。围绕着这个奇点的是一个“无法返回”的区域,这个区域的边界称为“视野”或“事件地平”,区域的半径叫做“史瓦西半径”。任何进入这个区域的物质,包括光线,都无法摆脱这个奇点的巨大引力而逃逸,它们就像掉进了一个无底深渊,就象一个漆黑的无底洞,因而称为“黑洞”。当黑洞靠近一个天体时,它会吸走这个天体的部分物质。被吸引的物质呈螺旋状旋转,原子微粒会从黑洞的边缘沿螺旋线坠向中心,速度会越来越快,直至达到每秒九百多公里。当物体被黑洞吞没时,会因为互相碰撞而使温度上升到几百万度,并发出χ射线和γ射线。在宇宙中,只有黑洞能使物体在密集的轨道上加速到如此高的速度;也只有黑洞才会以这种方式发射χ射线和γ射线。被天文学家检测到就能够勾画出引力场图形,发现黑洞。1996年,天文学家们发现银河系中心一个巨大黑洞,它以每秒200千米速度绕银河系中心运动,离中心越近,其速度越快,其中心的射电源能量非常大,而体积却非常之小。

为了理解黑洞是如何形成的,我们首先需要理解一个恒星的生命周期。当恒星进入老年,耗尽了燃料,它开始变冷并开始收缩。1928年,一位印度研究生——萨拉玛尼安钱德拉塞卡——乘船来英国剑桥跟英国天文学家阿瑟爱丁顿爵士(一位广义相对论家)学习。在他从印度来英的旅途中,算出在耗尽所有燃料之后,多大的恒星可以继续对抗自己的引力而维持自己。这个思想是说:当恒星变小时,物质粒子靠得非常近,而按照泡利不相容原理,它们必须有非常不同的速度,使它们互相散开。达到平衡而保持其半径不变,正如在它的生命的早期引力被热所平衡一样。而粒子的最大速度被相对论限制为光速。这意味着,恒星变得足够紧致之时,由不相容原理引起排斥力就会比引力的作用小。强德拉塞卡算出,大约为太阳质量144 倍的恒星不支持自身以抵抗自己的引力。(这质量现在称为强德拉塞卡极限。)苏联科学家列夫达维多维奇兰道几乎在同时也得到了类似的发现。兰道指出,对于恒星还存在另一可能的终态。其极限质量大约也为太阳质量的一倍或二倍,但是其体积甚至比白矮星还小得多。这些恒星是由中子和质子之间,而不是电子之间的不相容原理排斥力所支持。所以它们被叫做中子星。然而使之超过极限将会发生什么?它会坍缩到无限密度吗?爱丁顿为此感到震惊,他拒绝相信强德拉塞卡的结果。爱丁顿认为,一颗恒星不可能坍缩成一点。这是大多数科学家的观点:爱因斯坦自己写了一篇论文,宣布恒星的体积不会收缩为零。爱丁顿的敌意使强德拉塞卡抛弃了这方面的工作,转去研究诸如恒星团运动等其他天文学问题。然而,他获得1983年诺贝尔奖。根据广义相对论,太阳质量144 倍的恒星的恒星会发生什么情况呢?这个问题被一位年轻的美国人罗伯特奥本海默于1939年首次解决。然而,他所获得的结果表明,用当时的望远镜去观察不会再有任何结果。以后,因第二次世界大战的干扰,奥本海默本人非常密切地卷入到原子弹计划中去。但在本世纪60年代,现代技术的应用使得天文观测范围和数量大大增加,重新激起人们的兴趣。奥本海默得到的图景是:恒星的引力场改变了光线的路径,使之和原先没有恒星情况下的路径不一样。光锥是表示光线从其顶端发出后在空间——时间里传播的轨道。光锥在恒星表面附近稍微向内偏折,在日食时观察远处恒星发出的光线,可以看到这种偏折现象。当该恒星收缩时,其表面的引力场变得很强,光线向内偏折得更多,从而使得光线从恒星逃逸变得更为困难。对于在远处的观察者而言,光线变得更黯淡更红。最后,当这恒星收缩到某一临界半径时,表面的引力场变得如此之强,使得光锥向内偏折得这么多,以至于光线再也逃逸不出去。根据相对论,没有东西会走得比光还快。这样,如果光都逃逸不出来,其他东西更不可能逃逸,都会被引力拉回去。也就是说,存在一个事件的集合或空间——时间区域,光或任何东西都不可能从该区域逃逸而到达远处的观察者。现在我们将这区域称作黑洞,将其边界称作事件视界,它和刚好不能从黑洞逃逸的光线的轨迹相重合。

1971年约翰阿奇贝尔德威勒(John Archibald Wheeler)命名这样的事物为“黑洞”,因为光无法从中逃逸。基于许多证据,天文学家有许多他们认为可能是黑洞的候选天体(其证据是:它们的巨大质量可以从其对其他物体的相互作用中得到;并且有时它们会发出X射线,这被认为是正在坠入其中的物质发出的)。

广义相对论预言,运动的重物会导致引力波的辐射,那

伊斯雷尔的结果只处理了由非旋转物体形成的黑洞。1963年,新西兰人罗伊克尔找到了广义相对论方程的描述旋转黑洞的一簇解。这些“克尔”黑洞以恒常速度旋转,其大小与形状只依赖于它们的质量和旋转的速度。如果旋转为零,黑洞就是完美的球形,这解就和上一样。如果有旋转,黑洞的赤道附近就鼓去(正如太阳由于旋转而鼓出去一样),而旋转得越快则越多。由此人们猜测,如将伊斯雷尔的结果推广到包括旋转体的情形,则任何旋转物体坍缩形成黑洞后,将最后终结于由克尔解描述的一个静态。在引力坍缩之后,一个黑洞必须最终演变成一种能够旋转、但是不能搏动的态。并且它的大小和形状,只决定于它的质量和旋转速度,而与坍缩成为黑洞的原先物体的性质无关。此结果以这样的一句谚语表达而成为众所周知:“黑洞没有毛。”“无毛”定理具有巨大的实际重要性,因为它极大地限制了黑洞的可能类型。

黑洞是科学史上极为罕见的情形之一,在没有任何观测到的证据证明其理论是正确的情形下,作为数学的模型被发展到非常详尽的地步。的确,这经常是反对黑洞的主要论据:你怎么能相信一个其依据只是基于令人怀疑的广义相对论的计算的对象呢?天文学家观测了有些双星系统,其中只有一颗可见的恒星绕着另一颗看不见的伴星运动的系统。人们当然不能立即得出结论说,这伴星即为黑洞——它可能仅仅是一颗太暗以至于看不见的恒星而已。然而,一个叫做天鹅X-1的,也刚好是一个强的X射线源。这现象的最好解释是,物质从可见星的表面被吹起来,当它落向不可见的伴星之时,发展成螺旋状的轨道(这和水从浴缸流出很相似),并且变得非常热而发出X射线。为了使这机制起作用,不可见物体必须非常小,像白矮星、中子星或黑洞那样。从观察那颗可见星的轨道,人们可推算出不可见物体的最小的可能质量。在天鹅X-1的情形,不可见星大约是太阳质量的6倍。按照强德拉塞卡的结果,它的质量太大了,既不可能是白矮星,也不可能是中子星,所以看为它只能是一个黑洞。

现在,在我们的星系中和邻近两个名叫麦哲伦星云的星系中,还有几个类似天鹅X-1的黑洞的证据。然而,几乎可以肯定,黑洞的数量比这多得太多了!在宇宙的漫长历史中,很多恒星应该已经烧尽了它们的核燃料并坍缩了。黑洞的数目甚至比可见恒星的数目要大得相当多。单就我们的星系中,大约总共有1千亿颗可见恒星。这样巨大数量的黑洞的额外引力就能解释为何目前我们星系具有如此的转动速率,单是可见恒星的质量是不足够的。我们还有某些证据说明,在我们星系的中心有大得多的黑洞,其质量大约是太阳的10万倍。星系中的恒星若十分靠近这个黑洞时,作用在它的近端和远端上的引力之差或潮汐力会将其撕开,它们的遗骸以及其他恒星所抛出的气体将落到黑洞上去。正如同在天鹅X-1情形那样,气体将以螺旋形轨道向里运动并被加热,虽然不如天鹅X-1那种程度会热到发出X射线,但是它可以用来说明在星系中心观测到的非常紧致的射电和红外线源。

人们认为,在类星体的中心是类似的、但质量更大的黑洞,其质量大约为太阳的1亿倍。落入此超重的黑洞的物质能提供仅有的足够强大的能源,用以解释这些物体释放出的巨大能量。当物质旋入黑洞,它将使黑洞往同一方向旋转,使黑洞产生一类似地球上的一个磁场。落入的物质会在黑洞附近产生能量非常高的粒子。该磁场是如此之强,以至于将这些粒子聚焦成沿着黑洞旋转轴,也即它的北极和南极方向往外喷射的射流。在许多星系和类星体中确实观察到这类射流。

人们还可以考虑存在质量比太阳小很多的黑洞的可能性。因为它们的质量比强德拉塞卡极限低,所以不能由引力坍缩产生:这样小质量的恒星,甚至在耗尽了自己的核燃料之后,还能支持自己对抗引力。只有当物质由非常巨大的压力压缩成极端紧密的状态时,这小质量的黑洞才得以形成。一个巨大的氢弹可提供这样的条件。更现实的可能性是,在极早期的宇宙的高温和高压条件下会产生这样小质量的黑洞。导致形成恒星和星系的无规性是否导致形成相当数目的“太初”黑洞,这要依赖于早期宇宙的条件的细节。所以如果我们能够确定现在有多少太初黑洞,我们就能对宇宙的极早期阶段了解很多。

如果从事件视界(亦即黑洞边界)来的光线永远不可能互相靠近,则事件视界的面积可以保持不变或者随时间增大,但它永远不会减小。事实上,只要物质或辐射落到黑洞中去,这面积就会增大;或者如果两个黑洞碰撞并合并成一个单独的黑洞,这最后的黑洞的事件视界面积就会大于或等于原先黑洞的事件视界面积的总和。事件视界面积的非减性质给黑洞的可能行为加上了重要的限制。

一黑洞附近,存在一种非常容易的方法违反第二定律:只要 将一些具有大量熵的物体,譬如一盒气体扔进黑洞里。黑洞外物体的总熵就会减少。当然,人们仍然可以说包括黑洞里的熵的总熵没有降低——但是由于没有办法看到黑洞里面,我们不能知道里面物体的熵为多少。黑洞面积定理的发现(即只要物体落入黑洞,它的事件视界面积就会增加),普林斯顿一位名叫雅可布柏肯斯坦的研究生提出,事件视界的面积即是黑洞熵的量度。由于携带熵的物质落到黑洞中去,它的事件视界的面积就会增加,这样黑洞外物质的熵和事件视界面积的和永远不会降低。

如果一个黑洞具有熵,那它也应该有温度。但具有特定温度的物体必须以一定的速率发出辐射。为了不违反热力学第二定律这辐射是必须的。所以黑洞必须发出辐射。按照量子力学不确定性原理,旋转黑洞应产生并辐射粒子。这辐射的粒子谱刚好是一个热体辐射的谱,而且黑洞以刚好防止第二定律被违反的准确速率发射粒子和辐射,其温度只依赖于黑洞的质量——质量越大则温度越低。

我们知道,任何东西都不能从黑洞的事件视界内逃逸出来,何以黑洞会发射粒子呢?量子理论给我们的回答是,粒子不是从黑洞里面出来的,而是从紧靠黑洞的事件的外面的“空”的空间来的!我们可以用以下的方法去理解它:我们以为是”真空”的空间不能是完全空的,因为那就会意味着诸如引力场和电磁场的所有场都必须刚好是零。然而场的数值和它的时间变化率如同不确定性原理所表明的粒子位置和速度那样,对一个量知道得越准确,则对另一个量知道得越不准确。所以在空的空间里场不可能严格地被固定为零,因为那样它就既有准确的值(零)又有准确的变化率(也是零)。场的值必须有一定的最小不准确量或量子起伏。人们可以将这些起伏理解为光或引力的粒子对,它们在某一时刻同时出现、互相离开、然后又互相靠近而且互相湮灭。这些粒子加速器直接探测到。然而,可以测量出它们的间接效应。例如,测出绕着原子运动的电子能量发生的微小变化和理论预言是如此相一致,以至于达到了令人惊讶的地步。不确定性原理还预言了类似的虚的物质粒子对的存在,例如电子对和夸克对。然而在这种情形下,粒子对的一个成员为粒子而另一成员为反粒子(光和引力的反粒子正是和粒子相同)。

因为能量不能无中生有,所以粒子反粒子对中的一具参与者有正的能量,而另一个有负的能量。由于在正常情况下实粒子总是具有正能量,所以具有负能量的那一个粒子注定是短命的虚粒子。它必须找到它的伴侣并与之相湮灭。然而,一颗接近大质量物体的实粒子比它远离此物体时能量更小,因为要花费能量抵抗物体的引力吸引才能将其推到远处。正常情况下,这粒子的能量仍然是正的。但是黑洞里的引力是如此之强,甚至在那儿一个实粒子的能量都会是负的。所以,如果存在黑洞,带有负能量的虚粒子落到黑洞里变成实粒子或实反粒子的可能的。这种情形下,它不再需要和它的伴侣相湮灭了,它被抛弃的伴侣也可以落到黑洞中去。具有正能量的它也可以作为实粒子或实反粒子从黑洞的邻近逃走。对于一个远处的观察者而言,这看起来就像粒子是从黑洞发射出来一样。黑洞越小,负能粒子在变成实粒子之前必须走的距离越短,这样黑洞发射率和表观温度也就越大。辐射出去的正能量会被落入黑洞的负能粒子流所平衡。按照爱因斯坦方程E=mc2(E是能量,m是质量,c为光速),能量和失质量时,它的事件视界面积变小,但是它发射出的辐射的熵过量地补偿了黑洞的熵的减少,所以 第二定律从未被违反过。

还有,黑洞的质量越小,则其温度越高。这样当黑洞损失质量时,它的温度和发射率增加,因而它的质量损失得更快。人们并不很清楚,当黑洞的质量最后变得极小时会发生什么。但最合理的猜想是,最终将会在一具巨大的、相当于几百万颗氢弹爆炸的发射爆中消失殆尽。一个具有几倍太阳质量的黑洞只具有千万分之一度的绝对温度。这比充满宇宙的微波辐射的温度(大约27K)要低得多,所以这种黑洞的辐射比它吸收的还要少。如果宇宙注定继续永远膨胀下去,微波辐射的温度就会最终减小到比这黑洞的温度还低,它就开始损失质量。但是即使那时候,它的温度是如此之低,以至于要用100亿亿亿亿亿亿亿亿年(1后面跟66个O)才全部蒸发完。这比宇宙的年龄长得多了,宇宙的年龄大约只有100到200亿年(1或2后面跟10个0)。另一方面在宇宙的极早期阶段存在由于无规性引起的坍缩而形成的质量极小的太初黑洞。这样的小黑洞会有高得多的温度,并以大得多的速率发生辐射。具有10亿吨初始质量的太初黑洞的寿命大体和宇宙的年龄相同。初始质量比这小的太初黑洞应该已蒸发完毕,但那些比这稍大的黑洞仍在辐射出X射线以及伽玛射线。这些X 射线和伽玛射线像是光波,只是波长短得多。这样的黑洞几乎不配这黑的绰号:它们实际上是白热的,正以大约1万兆瓦的功率发射能量。现在我们称它为白洞。

由于太初黑洞非常稀罕,则不太可能存在一个近到我们可以将其当作一个单独的伽玛射线源来观察。但是由于引力会将太初黑洞往任何物质处拉近,所以在星系里面和附近它们应该会更稠密得多。虽然伽玛射线背景告诉我们,平均每立方光年不可能有多于300个太初黑洞,但它并没有告诉我们,太初黑洞在我们星系中的密度。譬如讲,如果它们的密度高100万倍,则离开我们最近的黑洞可能大约在10亿公里远,或者大约是已知的最远的行星——冥王星那么远。在这个距离上复查探测黑洞恒定的辐射,即使其功率为1万兆瓦,仍是非常困难的。人们必须在合理的时间间隔里,譬如一星期,从同方向检测到几个伽玛射线量子,以便观测到一个太初黑洞。否则,它们仅可能是背景的一部份。因为伽玛射线有非常高的频率,从普郎克量子大批量原理得知,每一伽玛射线量子具有非常高的能量,这样甚至发射一万兆瓦都不需要许多量子。而要观测到从冥王星这么远来的如此少的粒子,需要一个比任何迄今已造成的更大的伽玛射线探测器。况且,由于伽玛射线不以穿透大气层,此探测器必须放到处空间。

附:蛀洞

蛀洞作为一种新的概念,提出已经有70多年了。当爱因斯但提出广义相对论之后不久,物理学家就开始对 蛀洞发生兴趣。大尺度蛀洞是爱因斯但广义相对论场方程的一个解,它标志着一种空间和时间的几何结构。在这种结构中,宇宙的两个区域是由短而窄的“咽喉状部分”相连接。1916年卡尔·施瓦兹奇尔德解爱因斯但广义相对论场方程得到的施瓦兹奇尔德蛀洞具有动态结构。蛀洞由零半径膨涨到最大半径,然后又收缩回零。这一过程进行得极快,即使以光速运动也无法从一个孔口到达另一孔口。此外,蛀洞有很强的引力,当人们离它还有相当的距离时就会被引力撕成碎块。这样的蛀洞当然不能作为旅行的通道。

索恩等入构思了可通行蛀洞的几何结构,其咽喉部保持开放,人们通过时只受到适度的加速度和潮汐力。爱因斯坦的场方程表明,任何可通行的蛀洞一定含有某种形式的奇异物质。这种奇异物质具有“负压力”,有点象被拉长的弹簧,现在还没有人知道这种物质是否存在。假如这种物质存在,它与其它物质的相互作用很弱,又不会伤害旅行者,那么可通行的蛀洞就有存在的可能性。如果我们能找到索恩所构想的那种蛀洞,便可以将蛀洞的一个边洞口开在太阳附近,另一边洞口开在天琴座织女星附近,乘火箭沿蛀洞作星际旅行,在短时间内到达距离为25光年的织女星。当然这一切仅仅是理论的延伸,到目前为止还没有一个人观察到蛀洞。

假设蛀洞有A、B两个洞口,使B洞口作加速运动,其速度接近光速,而A洞口保持静止,根据狭义相对论所测预的效应,B洞口的时钟慢于A洞口的时钟。这时乘火箭以接近光速的速度从A洞口向B洞口行进,到达B洞口的时刻比从A洞口出发时提前了。 此时立刻通过蛀洞返回,到达出发点A洞口的时刻比离开时还要早。也就是说10点钟时你从A洞口向B洞口以接近光速的速度运动,而到达B洞口时,时间却是9点钟,立刻穿过蛀洞回到A洞口,还不到10点种,这样通过蛀洞就完成了一次逆时而行的旅行。科学幻想可以避开许多难以解决的具体问题,把它留给后人去研究,而科学推断必须面对这些难题,逆时旅行要重新评估自然现象中的因果关系和时间演变的概念。例如,当你在逆时旅行中如果遇见了你出生前的父母,当你试图向他们开枪射击时,就会出现难以解决的问题:如果击中身亡,那么你是如何来到世上?科学家认为必须采取一些基本原理来使自然系统的演变不会自相矛盾,即采用相容性原理来补充因果律。就是说枪不是不发火就是未命中。

自从索恩发表了大尺度蛀洞新的特征之后,引起了不少物理学家的关注,一些学者提出了新的假设。也有一些人提出许多疑点,认为蛀洞理论不可能成立,因为它不仅破坏了物理学的大前题——因果律,而且还会动摇许多物理学的定律,至少从目前人类的认识来看,蛀洞的存在还有很大的不确定性。

随着科学技术的发展,新的研究发现,“虫洞”的超强力场可以通过“负质量”来中和,达到稳定“虫洞”能量场的作用。科学家认为,相对于产生能量的“正物质”,“反物质”也拥有“负质量”,可以吸去周围所有能量。像“虫洞”一样,“负质量”也曾被认为只存在于理论之中。不过,目前世界上的许多实验室已经成功地证明了“负质量”能存在于现实世界,并且通过航天器在太空中捕捉到了微量的“负质量”。

据美国华盛顿大学物理系研究人员的计算,“负质量”可以用来控制“虫洞”。他们指出,“负质量”能扩大原本细小的“虫洞”,使它们足以让太空飞船穿过。他们的研究结果引起了各国航天部门的极大兴趣,许多国家已考虑拨款资助“虫洞”研究,希望“虫洞”能实际用在太空航行上。

大爆炸与黑洞

有些人很难理解为什么大爆炸不是一个黑洞。毕竟物质它在其最初的几分之一秒内的密度比所有已知恒星的密度都高得多,而且如此高密度的物质理应强烈地扭曲时空,当密度足够大时,一定会出现一个相对于其内部质量而言尺寸小于史瓦西半径(Schwarzschild Radius)的区域。然而大爆炸设法避免了限于自己制造的黑洞之中并且令人不可思议的是奇点附近的空间实际上并未紧紧地卷曲反而展平了。这是怎么回事?

简单的回答是这样的:因为大爆炸在初始时刻膨胀得很快,而此后膨胀速率才逐渐降低,所以它避免了变成黑洞。空间可以被展平而时空不会。卷曲可以来自于时空尺度的时间部分。该尺度确定了宇宙膨胀的减速度。因此时空卷曲的总和与物质的密度有关,但膨胀和任何空间的卷曲对其都有影响。史瓦西关于引力方程的解是静态的,而且是一个静态球体坍缩成黑洞前的极限。史瓦西极限不适用于快速膨胀的物质。

标准的大爆炸模型是佛莱德曼-罗勃特森-沃尔克(FRW)(Friedmann-Robertson-Walker)对于广义相对论引力场方程的解系。这些解可以用来描述开放或闭合的宇宙。所有的FRW宇宙都在时间的原点处有一个奇点以代表大爆炸。黑洞也有奇点。并且一个没有光可以从中逃逸的封闭宇宙的定义于一个黑洞的定义是完全相同的。那么区别在哪里呢?

第一个显著的区别是FRW模型中的奇点位于该宇宙中所有事件的过去,而黑洞的奇点存在于未来。因此大爆炸更象一个作为黑洞在时间上反转的白洞。依据经典的广义相对论,与黑洞不可被消灭的(时间反转的)原因一样,白洞不能存在。如果它们存在这(指上述解释,译者)可能就不适用了。

但一个标准的FRW黑洞模型也和白洞不同。白洞有一个作为黑洞反转的白洞的视界。任何东西都不能进入白洞的视界,同样也不能逃离黑洞的视界。大致而言,这就是白洞的定义。注意,这本可以简单地用于比较FRW模型与标准黑洞或白洞模型(如静态史瓦西(Schwarzschild)或旋转的凯尔(Kerr)解)的不同。但对于与更一般的黑洞或白洞比较而言,这就困难得多。真正的区别在于FRW模型没有与黑洞或白洞同型的视界。在白洞视界之外的坐标轴可以追溯到无穷远的过去而不会触及白洞的奇点,而在FRW宇宙中所有的坐轴都源于奇点。

真实的宇宙与FRW宇宙可能有所不同,我们能排除它是一个黑洞或白洞的可能吗?在此我不想讨论诸如“奇点到底存在吗?”一类的问题,而是假设广义相对论在我们所讨论的范围内是正确的。

前述对于否定大爆炸是黑洞的讨论仍然适用。黑洞的奇点总是位于未来的光锥内而天文学的观测已清楚地指出大爆炸发生于过去。有可能大爆炸实际上是白洞的遗物。

FRW模型的主要假设(前提)是宇宙在宏观上看是同质的、等温的。这也就是说:在任何给定的宇宙时间(点)上,从任何方向看,它都是相同的。天文学很好地证明了星系的分布在几百万光年以上的大尺度范围内是相当同质和等温的。这种高度的宇宙背景辐射(CBR)的等温性有力地支持了同质性。然而可观测的宇宙的尺寸受光速和宇宙年龄所限。我们只能看到大约100到200亿光年远(的东西),这大约是已知星系分布结构尺寸的100倍。

与宇宙观测相一致的白洞模型应是恒星坍缩成黑洞的时间的反转。作为一个良好的近似,我们可以忽略压力而将其视为一个除引力外无内部作用力的球形星尘云。自从1939年施耐德(Snyder)和欧文海默(Oppenheimer)的开创性工作以来,恒星的坍缩就一直被密切地注意并研究着。(因此)这种简单的情形很好理解。有可能可以(在不考虑压力的情况下)建造一个精确的恒星坍缩模型:在球形形体的外部将所有的FRW解和其外部的史瓦西解粘合在一起。

接下来的问题是:如果星尘球比可观测的宇宙要大得多的话,作为时间反转的星尘球坍缩的这个模型与FRW模型就会无法区分。另言之,我们不能排除宇宙是一个极大的白洞的可能。(这)只有等上几十亿年直到球的边界进入我们的视野时才能知道。

必须承认如果我们放弃同质等温的假设,还有许多其他可能的宇宙模型,其中有些拓扑结构并不太复杂。但从这些理论中难以推导出任何象这样(指FRW模型,译者)严谨的东西。最令人兴奋的假设是在1987年由海勒比(CHellaby)提出的:他构想宇宙初创是一串相互隔绝的珠子,在某一确定时刻它们各自独立地爆裂出洞并合并成宇宙。这些都可用一个广义相对论的精确的单解所描述。

黑洞是宇宙中存在的一种特殊天体,是大质量恒星灭亡后的尸骸。

这种尸骸是天体食物链中的顶级吃货,通吃一切天体。

在黑洞极端引力范围,任何靠近它的天体都会被它拉扯撕碎,吃进它肚子里,落入那无底的深渊。

说黑洞无底,是因为所有的物质都掉落到一个没有体积的奇点中不见了,去了另外一个世界。

科学家们对这个奇点的描述是:体积无限小、曲率无限大、温度无限高、密度无限大。

什么是无限小?一个电子、一个中微子、一个光子也不是无限小。

量子力学认为,人类认识最小的极限是普朗克尺度,这个尺度为16x10^-35米,也就是1千亿亿亿亿分之一米。

电子尺度为10^-16m,普朗克尺度比电子小1千亿亿倍。

奇点当然比这个还要小,否则就不叫奇点了,也不是无限小了。

人类目前还没有发现普朗克尺度的物质,就更别说能够认识奇点了。

所以现代所有理论在奇点处失效。

因此奇点不是我们世界可以认识的,也不是我们世界的东西,而是超时空另外一个世界的东西。

现代量子力学认为进入黑洞视界内的各种物质都塌缩到了奇点,就是到了其他时空去了,所以黑洞是吃不饱的,因为它把物质都搬到我们无法认知的地方去了。

那么黑洞是什么形状的呢?

前面说了,黑洞实体是一个奇点,对于我们来说就是乌有。

但黑洞无毛理论认为,黑洞哪怕没有了物质的一切性状,但还有三个物理量留在我们的世界,这就是质量、角动量、电荷。

因此,这就是我们世界能够观测到黑洞的线索。

黑洞奇点无限曲率会在自己周围形成一个引力场,在这个引力场里一切物质都将被吞噬,连光线也不例外。

这个引力场呈现球形,与黑洞质量成正比。

这就是我们常说的黑洞史瓦西半径,计算史瓦西半径的公式为:

R=2GM/C²

式中,R为史瓦西半径(m),G为引力常量(667x10^-11N·m/kg),M为天体质量,C为光速。

宇宙最小的黑洞有太阳质量3倍多,史瓦西半径约为9000米;已知宇宙中最大黑洞有太阳质量的660亿倍,史瓦西半径约1980亿公里。

这个公式表明,当与质量成正比的一个临界点,光速都不能逃脱时,这就是一个黑洞。

因此,黑洞就是一个无法看到的黑咕隆咚的球。

这个球有角动量,其角动量是继承了原天体的角动量,根据角动量守恒定律,物体在一定角速度下,半径变得越小,旋转得就会越快。

就像花样滑冰运动员,当其甩开退旋转时是很慢的,但当她将身体收缩成最小半径时,就快速旋转起来。

因此黑洞的旋转速度是极快的,有的接近光速。

在黑洞附近的天体及星际物质,被黑洞强大引力所吸引,会在史瓦西半径周围形成吸积盘,高速的运行使吸积盘的物质激烈碰撞,迸发出高温高亮的可见光和强大的能量射线流,这样人们就能够观测到这个黑洞。

在史瓦西半径的边缘表面,会有一层吸积盘物质包裹,使人们可以看出黑洞的形状,这个像一层包膜样的可见部分,就叫黑洞事件视界,以这层膜为界,就是黑洞可以观测到和不能观测到的分界线。

旋转的角动量会把吸积盘甩成像一个草帽边,巨大而发亮。从这个角度看,黑洞就像两个合在一起极速旋转的草帽,或者一对合起来的民间乐器铜钹。

宇宙中存在太多未知的秘密,其中,黑洞的存在总是令人产生无限遐想,黑洞究竟是种什么天体?黑洞又是怎么形成的呢?白洞又是什么?是怎么来的?一起来了解一下吧!

黑洞是什么?

黑洞(Black hole)是现代广义相对论中,宇宙空间内存在的一种密度无限大,体积无限小的天体,所有的物理定理遇到黑洞都会失效。黑洞是由质量足够大的恒星在核聚变反应的燃料耗尽而死亡后,发生引力坍缩产生的。

黑洞的质量极其巨大,而体积却十分微小,它产生的引力场极为强劲,以至于任何物质和辐射在进入到黑洞的一个事件视界(临界点)内,便再无法逃脱,甚至目前已知的传播速度最快的光(电磁波)也逃逸不出。

白洞是什么?怎么来的?

黑洞无法直接观测,但可以借由间接方式得知其存在与质量,并且观测到它对其他事物的影响。借由物体被吸入之前的因高热而放出紫外线和X射线的“边缘讯息”,可以获取黑洞存在的讯息。推测出黑洞的存在也可借由间接观测恒星或星际云气团绕行轨迹取得位置以及质量。科学家最新研究理论显示,当黑洞死亡时可能会变成一个“白洞”,它不像黑洞吞噬邻近所有物质,而是喷射之前黑洞捕获的所有物质。

“黑洞”这个名字,总是令人遐想联翩。那么,究竟什么是“黑洞”?

这个名字的第一个字“黑”,表明它不会向外界发射或反射任何光线,也不会发射或反射其他形式的电磁波——无论是波长最长的无线电波还是波长最短的γ射线。因此人们无法看见它,它绝对是“黑”的。第二个字“洞”,说的是任何东西只要一进入它的边界,就休想再溜出去了,它就像一个真正的“无底洞”。

也许有人会想:假如我用一只超级巨大的探照灯对准黑洞照过去,黑洞不就现形了吗?错了!射向黑洞的光无论有多强,都会被黑洞全部“吞噬”,不会有一点反射。这个“无底洞”,照样还是那么“黑”。

把这种奇特的天体称为“黑洞”,真是太妙了。黑洞并不是科学家在一夜之间突然想到的。早在1798年,法国科学家拉普拉斯就根据牛顿建立的力学理论推测:“一个直径像地球、密度为太阳250倍的发光恒星,在其引力作用下,将不允许它的任何光线到达我们这里。”

这话是什么意思?我们不妨先从宇宙飞船说起。宇宙飞船要摆脱地球的引力进入行星际空间,速度至少要达到112千米/秒,否则它就永远逃不出地球引力的控制。这112千米/秒的速度,就是任何物体从地球引力场中“逃逸”出去所需的最低速度,称为地球的“逃逸速度”。

太阳的引力比地球引力强大得多,因此太阳的逃逸速度也要比地球的大得多,为618千米/秒。再进一步,要是一个天体的逃逸速度达到了光速,那么就连光线也不可能从它那里逃逸出去了。这样的天体就是黑洞,拉普拉斯所说的那个恒星便是生动的一例。光是宇宙间跑得最快的东西,既然连光都逃不出黑洞,那么其他一切东西也就休想逃出去了。

随着科学的发展,人们对黑洞的认识也越来越深入。如今,关于黑洞的更准确的说法是:“黑洞是广义相对论预言的一种特殊天体。它的基本特征是有一个封闭的边界,称为黑洞的‘视界’;外界的物质和辐射可以进入视界,视界内的东西却不能逃逸到外面去。”正因为黑洞如此“只进不出、贪得无厌”,所以才有了一个不雅的外号:“太空中最自私的怪物”。

不过,事情也不是那么简单。出乎人们意料,黑洞这个“怪物”,有时候竟然还十分“慷慨”。这又是怎么一回事?在20世纪70年代,英国科学家霍金等人以量子力学为基础,对黑洞作了更缜密的考察,结果发现黑洞会像“蒸发”那样稳定地往外发射粒子。考虑到这种“蒸发”,黑洞就不再是绝对“黑”的了。

霍金还证明,每个黑洞都有一定的温度,而且质量越小的黑洞温度就越高,质量越大的黑洞,其温度反而越低。大黑洞的温度很低,蒸发也很微弱;小黑洞的温度很高,蒸发也很猛烈,类似剧烈的爆发。一个质量像太阳那么大的黑洞,大约需要一个地球年才能蒸发殆尽;但是质量和一颗小行星相当的小黑洞,竟会在一秒钟内就蒸发得干干净净!

黑洞是怎么形成的?黑洞的演化过程是怎样的?

1两个互相吞噬的黑洞

黑洞就是中心的一个密度无限大、时空曲率无限高、体积无限小的奇点和周围一部分空空如也的天区,这个天区范围之内不可见。依据阿尔伯特-爱因斯坦的相对论,当一颗垂死恒星崩溃,它将聚集成一点,这里将成为黑洞,吞噬邻近宇宙区域的所有光线和任何物质。

黑洞的产生过程类似于中子星的产生过程:某一个恒星在准备灭亡,核心在自身重力的作用下迅速地收缩,塌陷,发生强力爆炸。当核心中所有的物质都变成中子时收缩过程立即停止,被压缩成一个密实的星体,同时也压缩了内部的空间和时间。

但在黑洞情况下,由于恒星核心的质量大到使收缩过程无休止地进行下去,中子本身在挤压引力自身的吸引下被碾为粉末,剩下来的是一个密度高到难以想象的物质。由于高质量而产生的引力,使得任何靠近它的物体都会被它吸进去。

也可以简单理解:通常恒星最初只含氢元素,恒星内部的氢原子核时刻相互碰撞,发生聚变。由于恒星质量很大,聚变产生的能量与恒星万有引力抗衡,以维持恒星结构的稳定。由于氢原子核的聚变产生新的元素——氦元素,接着,氦原子也参与聚变,改变结构,生成锂元素。

如此类推,按照元素周期表的顺序,会依次有铍元素、硼元素、碳元素、氮元素等生成,直至铁元素生成,该恒星便会坍塌。这是由于铁元素相当稳定,参与聚变时不释放能量,而铁元素存在于恒星内部。

导致恒星内部不具有足够的能量与质量巨大的恒星的万有引力抗衡,从而引发恒星坍塌,最终形成黑洞。说它“黑”,是因为它的密度无穷大,从而产生的引力使得它周围的光都无法逃逸。跟中子星一样,黑洞也是由质量大于太阳质量好几十甚至几百倍以上的恒星演化而来的。

当一颗恒星衰老时,它的热核反应已经耗尽了中心的燃料,由中心产生的能量已经不多了。这样,它再也没有足够的力量来承担起外壳巨大的重量。所以在外壳的重压之下,核心开始坍缩,物质将不可阻挡地向着中心点进军,直到最后形成体积接近无限小、密度几乎无限大的星体。而当它的半径一旦收缩到一定程度(一定小于史瓦西半径),质量导致的时空扭曲就使得即使光也无法向外射出——“黑洞”就诞生了。

2黑洞拉伸,撕裂并吞噬恒星

黑洞通常是因为它们聚拢周围的气体产生辐射而被发现的,这一过程被称为吸积。高温气体辐射热能的效率会严重影响吸积流的几何与动力学特性。已观测到了辐射效率较高的薄盘以及辐射效率较低的厚盘。当吸积气体接近中央黑洞时,它们产生的辐射对黑洞的自转以及视界的存在极为敏感。对吸积黑洞光度和光谱的分析为旋转黑洞和视界的存在提供了强有力的证据。数值模拟也显示吸积黑洞经常出现相对论喷流也部分是由黑洞的自转所驱动的。

通常天体物理学家会用“吸积”这个词来描述物质向中央引力体或者是中央延展物质系统的流动。吸积是天体物理中最普遍的过程之一,而且也正是因为吸积才形成了我们周围许多常见的结构。在宇宙早期,当气体朝由暗物质造成的引力势阱中心流动时形成了星系。

即使到了今天,恒星依然是由气体云在其自身引力作用下坍缩碎裂,进而通过吸积周围气体而形成的。行星(包括地球)也是在新形成的恒星周围通过气体和岩石的聚集而形成的。当中央天体是一个黑洞时,吸积就会展现出它最为壮观的一面。黑洞除了吸积物质之外,还通过霍金蒸发过程向外辐射粒子。

3蒸发

由于黑洞的密度极大,根据公式我们可以知道密度=质量/体积,为了让黑洞密度无限大,那就说明黑洞的体积要无限小,然后质量要无限大,这样才能成为黑洞。黑洞是由一些恒星“灭亡”后所形成的死星,它的质量极大,体积极小。但黑洞也有灭亡的那天,按照霍金的理论,在量子物理中,有一种名为“隧道效应”的现象,即一个粒子的场强分布虽然尽可能让能量低的地方较强,但即使在能量相当高的地方,场强仍会有分布,对于黑洞的边界来说,这就是一堵能量相当高的势垒,但是粒子仍有可能出去。

霍金还证明,每个黑洞都有一定的温度,而且温度的高低与黑洞的质量成反比例。也就是说,大黑洞温度低,蒸发也微弱;小黑洞的温度高蒸发也强烈,类似剧烈的爆发。相当于一个太阳质量的黑洞,大约要1x10^66年才能蒸发殆尽;相当于一颗小行星质量的黑洞会在1x10^-21秒内蒸发得干干净净。

4毁灭

黑洞会发出耀眼的光芒,体积会缩小,甚至会爆炸。当英国物理学家史蒂芬·霍金于1974年做此预言时,整个科学界为之震动。霍金的理论是受灵感支配的思维的飞跃,他结合了广义相对论和量子理论,他发现黑洞周围的引力场释放出能量,同时消耗黑洞的能量和质量。

假设一对粒子会在任何时刻、任何地点被创生,被创生的粒子就是正粒子与反粒子,而如果这一创生过程发生在黑洞附近的话就会有两种情况发生:两粒子湮灭、一个粒子被吸入黑洞。“一个粒子被吸入黑洞”这一情况:在黑洞附近创生的一对粒子其中一个反粒子会被吸入黑洞,而正粒子会逃逸,由于能量不能凭空创生。

我们设反粒子携带负能量,正粒子携带正能量,而反粒子的所有运动过程可以视为是一个正粒子的为之相反的运动过程,如一个反粒子被吸入黑洞可视为一个正粒子从黑洞逃逸。这一情况就是一个携带着从黑洞里来的正能量的粒子逃逸了,即黑洞的总能量少了,而爱因斯坦的公式E=mc^2表明,能量的损失会导致质量的损失。

当黑洞的质量越来越小时,它的温度会越来越高。这样,当黑洞损失质量时,它的温度和发射率增加,因而它的质量损失得更快。这种“霍金辐射”对大多数黑洞来说可以忽略不计,因为大黑洞辐射的比较慢,而小黑洞则以极高的速度辐射能量,直到黑洞的爆炸。

爱因斯坦的广义相对论预言了黑洞,但爱因斯坦曾拒绝这个预言。

那时,“黑洞”之名还未崛起,被称为“史瓦西奇点”的它,与如今的声名赫赫大相径庭。爱因斯坦、爱丁顿等广义相对论大牛都视其为200多年前“暗星”的一种虚妄延续。

从1783年的猜测,到1916年至1960年的争论,物理学家实际都在讨论黑洞是否存在这个问题。

在激烈的讨论中,黑洞逐渐建立起了其宇宙咖位,即便在这几百年间遭遇了太多的误解,但依旧保持风度地走进了当今物理学家的视野,并越发深入人心。

从初识,到相知,我们对黑洞到底有过那些误解?而如今我们又是如何看待它的呢?

1783年,一个英国人在假想的星球上向天空开了一炮,炮弹出堂速度为30万公里/秒……

这个人是英国自然哲学家 米歇尔 (John Michell),他大胆将当时盛行的 光粒子说 与牛顿的 引力定律 进行了结合,做了一个光炮弹的思想实验。

那时人们已经知道,虽然我们都被引力束缚在地球上,但只要速度足够大就可以摆脱地球的引力束缚。能摆脱这种束缚的最小初速度,称为 “逃逸速度” 。在地球表面,这个速度为112公里/秒。

反过来说,如果速度达不到逃逸速度,物体都会被引力拽下来。

米歇尔用牛顿的引力定律,证明了一个天体逃逸速度的平方与其质量成正比,与其半径成反比。质量不变半径越小,天体的逃逸速度就越大。

如果能压缩一个星球的半径,逃逸速度就可以超过30万公里/秒,这意味着这个星球让光都无法逃逸。在这样的星球上,米歇尔的光炮弹永远无法飞向太空。

以地球为例,只需将其压缩到半径仅1/3英寸,一颗巧克力豆大小,就会产生这样的效果。

这样高密度的星球可能吗?米歇尔认为可能,他甚至觉得夜空中存在着大量这样看不见的幽冥星球,并称呼它们为 “暗星” ,这就是最早、最原始的黑洞概念。

1783年11月27日,米歇尔向皇家学会汇报了关于暗星的预言。13年后,法国自然哲学家 拉普拉斯 (Pierre Simon Laplace)才在他的名著《宇宙体系论》的第1版里,提出了相同的预言。

然而1808年,托马斯·杨(Thomas Young)发现了光的双缝干涉现象,让当时光学“波粒之争”的天平倾向了惠更斯(Christiann Huygens)提出的波动说。牛顿光粒子说的主流地位由光波动说所代替。

像炮弹一样受引力影响的光粒子变成了似乎不会受引力影响的光波(那时的人们还不知道引力会对光波产生怎样的作用)。大概因为这个原因,拉普拉斯的《宇宙体系论》从第3版开始删除了有关暗星的描述。暗星概念随之沉寂,无人问津。

直到100年后,爱因斯坦平衡了光学的理论天平,终结了光的“波粒之争”,发展出了光的“波粒二象性”。

1915年11月,广义相对论更是横空出世,让物理学家再次建立起了引力对光作用的认知,只是这一次是以“时空曲率”的概念。 引力是时空曲率的直观感受,而光与一切物体在不受外力的情况下,必定在时空中以“短程线”运动。

所谓的“短程线”,可以说是时空中真正的最短路径,而日常说的“直线”更多是一种感官定义。

广义相对论发表后,不到一年。1916年,米歇尔和拉普拉斯的暗星预言,经一位德国炮兵校尉:史瓦西(Karl Schwarzschild)之手,以一种更加古怪的方式呈现在了物理学界。

当时,还在俄国前线战壕蹲坑的史瓦西,以一种简洁有效的方式:抛弃天体复杂的旋转问题,根据广义相对论的场方程,计算出了任意无旋转球状天体内外的时空曲率,并得出了一个描述黑洞的精确解。

以光速为逃逸速度,任何天体都有一个以史瓦西半径,这也刚好对应米歇尔和拉普拉斯计算出的暗星临界周长。不过因为有“时空曲率”概念的加持,空间的卷曲意味着光无法逃离,时间的卷曲还意味着时间流速的减慢(时间膨胀效应)。

然而,爱因斯坦对“天体被压缩到史瓦西半径之后”会塌缩为一个奇点的观点却皱起了眉头。

在欣赏史瓦西计算出的天体时空曲率的同时,爱因斯坦却不认为自然界存在“史瓦西奇点”,毕竟没有什么天体是不旋转的。再加上对恒星塌缩的不了解,爱因斯坦武断拒绝了广义相对论的这个理性财产。

1939年,爱因斯坦甚至还专门发表了一篇广义相对论的计算文章,以解释自然界为什么不可能存在“史瓦西奇点”。

他假想了一个靠着引力吸引而聚集在一起的运动粒子集团,然后通过计算证明了当这个集合越来越紧密时,球面上的引力就会增强,而在球面上运动的粒子为了产生足够的离心力,就必须运动地更快。

然而,当这个集团小于15倍临界周长时,引力会变得非常巨大,表面上的粒子就不得不超过光速。所以粒子集团不可能小于15倍临界值。

甚至爱因斯坦还计算了天体内部压力,得出当一个天体的周长被压缩到1125倍临界周长时,中心的压力就会成为无限大,但无限大的压力不可能存在。所以天体也就不可能小于1125倍临界周长。

爱因斯坦的计算是正确的,但他的理解却错了。这是因为在那个时代,物理学家们有一种倾向性观念:一个天体能得以存在,必须内力与外力平衡。然而事实却是内力是可以舍弃的。

在这次认知黑洞的战役中,曾帮助爱因斯坦洞察引力的直觉,却阻碍了他对黑洞的洞察。由此可知,正确的结果有时并不一定能得到正确的答案。

从20世纪20年代到50年代,物理学家对“史瓦西奇点”的研究,实际上都只在针对一个问题:自然界允许存在这种物体吗?

直到60年代后期,数学家克尔计算出了旋转黑洞的精确解,天文学界在黑洞观测上也有了进一步的发现,支持黑洞存在的证据开始压到一切质疑。1967年,“黑洞”这个名字正式被美国物理学家 约翰·阿奇博尔德·惠勒 (John Archibald Wheeler)叫响。大多数物理学家才开始认真面对黑洞。

60年代以前,人们主要都是利用广义相对论研究黑洞的时空结构。这个时代黑洞物理学研究的主要成就,属于黑洞的经典理论。

如1967年,由沃纳·以色列(Werner Israel)证明的 “无毛定理” ,该定理规定事件视界必须是完全平滑的,以此定理还可推导出黑洞在宏观上只由 质量、角动量、电荷 三个物理量决定,进阶为 “三毛定理”

以及1971年,霍金证明的黑洞 “面积定理” ,即在黑洞事件视界面积在顺时方向永不减小。这意味着黑洞只能合并,绝对无法分裂。当时霍金还根据经典理论证明了黑洞的温度是绝对零度,不过这后来被他自己又证伪了。

60年代后,黑洞开始了全新的热力学方向的研究。

在以色列物理学家雅各布·贝肯斯坦(Jacob Bekenstein)的黑洞熵概念的启发下,1974年霍金提出了“霍金辐射”,即由于真空涨落,在黑洞附近产生的虚粒子对,有可能被事件视界分开,一个虚粒子掉进黑洞,另一个成功逃跑,进而转变为一个实粒子。

这在远处的观察者看来,就像黑洞在辐射一样。而且由于黑洞内外时空结构的不同,掉进去的大多是负粒子,所以黑洞会由于霍金辐射而失去质量。辐射也意味着黑洞有温度。

一个5倍太阳质量的黑洞,理论温度约10^-7K,不吃不喝也需要10^62年才会消失殆尽。黑洞的温度与质量成反比,所以黑洞质量越小,辐射越强,温度越高,寿命也越短。

霍金辐射的出现,可以说开启了黑洞量子领域的研究。黑洞会蒸发,意味着它吃进去的信息总有一天会消失,这是量子力学不允许的,为了对抗黑洞信息悖论,出现了 互补原理 全息原理 ,进而又引出了 黑洞火墙悖论

至今,如何处理这些悖论依旧是一个谜。

总之,诞生于广义相对论的黑洞,其具体的特性却需要量子力学来描述,而爱因斯坦对量子力学一直持有“不完备”的质疑,或许这也是他对黑洞产生原始抗拒的由来。

然而正因如此,物理学家越来越着迷于黑洞,因为在黑洞研究的领域里,物理学家似乎找到了使20世纪物理学最伟大的两个成就: 广义相对论 量子力学 结合的可能性。

为了触及“万物之理”的物理圣杯(即一个单一理论解释所有物理现象),深层次认知黑洞就成为了至关重要的一步。

宇宙广袤无垠,黑洞多如牛毛。黑洞距离我们人类非常遥远,根本无须担心危险会马上波及到我们人类赖以生存的星球。太阳正值年富力强,银河是我们安然无虞的天然屏障。黑洞可以说是宇宙中最迷人的一种存在。“黑洞”一词最早是由美国科学家约翰·惠勒在1969年提出的,以取代以前的“引力完全坍缩的星球”这一说法。

是一种天体,只允许外物质和辐射进入,不允许其中物质和辐射脱离边界,通过引力作用确定它的存在。黑洞是宇宙中于天体存在形式的运动势天体系统。所谓的黑洞并不是`洞’,而是一个质量奇点,具有巨大的的质量,引力和惯性,没有任何能量,也不能转换为能量的存在。现在宇宙学家们主观臆想,画的黑洞完全是错误的。

黑洞是万有引力的终极代表 因为靠近它的所有物质甚至光都逃不脱,引力真的能把东西吸引吗,我觉得不是,真正让物质被吸引的不是引力 而是引力能使空间弯曲造成物质惯性移动。光也是在空间传播的 自然也摆脱不了空间弯曲而弯曲,黑洞能把空间扭曲程度能成为一个圆 甚至内圆,所以任何物质一靠近就会被扭曲的空间惯性的循环绕或者直接进入黑洞中心。

黑洞应该就是空间破了个洞,在我们物理认知里,真空就是空无一物,而多维空间包括宙内外并没有绝对真空,而黑洞形成是质量被压缩到一定程度,物理性坍塌进入另外一个更加真空空间里,收纳的质量从另外一个空间爆发,形成新的宇宙物质,黑洞有大有小,我们的宇宙大爆炸时代应该也是另外个空间超大黑洞击穿我们的空间喷发形成的!

黑洞是首先从理论上进行预测,之后很久才被观测到的。首先预测黑洞的英国天文学家赫歇尔,赫歇尔发现,致密的大恒星具有较高的逃逸速度,于是他设想,如果一颗恒星质量足够大且足够致密,其逃逸速度就会大于光速,使得其发出的光线被自身引力吸引回去,外界无法看见。

赫歇尔将这种假象的天体称为“隐星”。后来证明,主序星和红巨星是不可能有这么大的逃逸速度的,赫歇尔的“隐星”不可能存在。但当时发现的白矮星,质量虽然不大,但密度惊人,拥有比任何主序星都大的逃逸速度。

在此以前,美国天文学家钱德拉赛卡对白矮星的性质进行了研究,并计算出质量超过一定极限的冷恒星不能抵挡强大的引力,会收缩成一点。  

60年代发现了中子星,中子星的性质与黑洞已经很接近,加上广义相对论对黑洞吸引光线并扭曲时空的方式进行了具体描述,黑洞在理论上的构建已经成型了。

扩展资料:

物理性质划分

根据黑洞本身的物理特性质量,角动量,电荷划分,可以将黑洞分为五类。

不旋转不带电荷的黑洞:它的时空结构于1916年由史瓦西求出,称史瓦西黑洞。

不旋转带电黑洞:称R-N黑洞。时空结构于1916至1918年由赖斯纳(Reissner)和纳自敦(Nordstrom)求出。

旋转不带电黑洞:称克尔黑洞。时空结构由克尔于1963年求出。

一般黑洞:称克尔-纽曼黑洞。时空结构于1965年由纽曼求出。

双星黑洞:与其他黑洞彼此之间相互绕转的黑洞。              

-黑洞  

什么是黑洞?

早在18世纪末,PSM拉普拉斯根据牛顿引力理论就曾预言,只要天体质量足够大,其引力就有可能强到连自身发出的光都无法逃逸到远处的程度,以致...
点击下载
热门文章
    确认删除?
    回到顶部