三角函数(正弦和余弦)值在各象限的符号是怎样的

栏目:古籍资讯发布:2023-10-29浏览:5收藏

三角函数(正弦和余弦)值在各象限的符号是怎样的,第1张

1、第一象限:正弦是正的,余弦是正的,正切是正的。

2、第二象限:正弦是正的,余弦是负的,正切是负的。

3、第三象限:正弦是负的,余弦是负的,正切是正的。

4、第四象限:正弦是负的,余弦是正的,正切是负的。

简单概括为:一全正,二正弦,三正切,四余弦 。

六边形的六个角分别代表六种三角函数,存在如下关系:

1)对角相乘乘积为1,即sinθ·cscθ=1; cosθ·secθ=1; tanθ·cotθ=1。

2)六边形任意相邻的三个顶点代表的三角函数,处于中间位置的函数值等于与它相邻两个函数值的乘积,如:sinθ=cosθ·tanθ;tanθ=sinθ·secθ

3)阴影部分的三角形,处于上方两个顶点的平方之和等于下顶点的平方值,如:  ;  ;  。

扩展资料:

将α看做锐角(注意是“看做”),按所得的角的象限,取三角函数的符号。也就是“象限定号,符号看象限”(或为“奇变偶不变,符号看象限”)。

在Kπ/2中如果K为偶数时函数名不变,若为奇数时函数名变为相反的函数名。正负号看原函数中α所在象限的正负号。关于正负号有个口诀;一全正,二正弦,三两切,四余弦,即第一象限全部为正,第二象限角,正弦为正,第三象限,正切和余切为正,第四象限,余弦为正。

或简写为“ASTC”,即“all”“sin”“tan+cot”“cos”依次为正。还可简记为:sin上cos右tan/cot对角,即sin的正值都在x轴上方,cos的正值都在y轴右方,tan/cot 的正值斜着。

比如:90°+α。定名:90°是90°的奇数倍,所以应取余函数;定号:将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,余弦为负。所以sin(90°+α)=cosα , cos(90°+α)=-sinα 这个非常神奇,屡试不爽~

还有一个口诀“纵变横不变,符号看象限”,例如:sin(90°+α),90°的终边在纵轴上,所以函数名变为相反的函数名,即cos,所以sin(90°+α)=cosα。

钝角三角形有一个钝角和两个锐角,令其钝角为α。

sinα = sin(180°-α)

cosα=-cos(180°-α)

tanα=-tan(180°-α)

cotα=-cot(180°-α)

secα=-sec(180°-α)

cscα=csc(180°-α)

钝角三角形的两条高在钝角三角形的外部,另一条在三角形内部。钝角三角形中,两个锐角度数之和小于钝角度数。

扩展资料:

在三角形中,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。对∠BAC而言,对边a=BC、斜边c=AB、邻边b=AC。

对于大于 2π 或小于等于2π 的角度,可直接继续绕单位圆旋转。正弦和余弦变成了周期为 2π的周期函数:对于任何角度θ和任何整数k。

周期函数的最小正周期叫做这个函数的“基本周期”。正弦、余弦、正割或余割的基本周期是全圆,也就是 2π弧度或 360°;正切或余切的基本周期是半圆,也就是 π 弧度或 180°。

--钝角三角形

--三角函数

假如有一个直角三角形 ABC,其中 a、b 是直角边,c 是斜边。

正弦(sin)等于对边比斜边;sinA=a/c;

余弦(cos)等于邻边比斜边;cosA=b/c;

正切(tan)等于对边比邻边;tanA=a/b。

扩展资料

1、互余角的三角函数间的关系:

sin(90°-α)=cosα, cos(90°-α)=sinα,

tan(90°-α)=cotα, cot(90°-α)=tanα

2、常用的诱导公式

设α为任意角,终边相同的角的同一三角函数的值相等

sin(2kπ+α)=sinα (k∈Z)

cos(2kπ+α)=cosα (k∈Z)

tan(2kπ+α)=tanα (k∈Z)

有关的定理:

1、正弦定理(The Law of Sines)是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”,即a/sinA = b/sinB =c/sinC = 2r=D(r为外接圆半径,D为直径)。

2、余弦定理:

3、在平面三角形中,正切定理说明任意两条边的和除以第一条边减第二条边的差所得的商等于这两条边的对角的和的一半的正切除以第一条边对角减第二条边对角的差的一半的正切所得的商。

-正弦

-余弦

-正切

在直角三角形ABC种,a,b代表直角边,c代表斜边。

以角A为例,于是就有:

(1)sinA:表示正弦。角A所对的边与斜边的比值,sinA=a/c。

(2)cosA:表示余弦。角A相邻的直边与斜边的比值,cosA=b/c。

(3)tanA:表示正切。角A所对的边与相邻的直边比值, tanA=a/b。

正弦 (sine), 余弦 (cosine) 和 正切 (tangent) (英语符号简写为 sin, cos 和 tan) 是 直角三角形边长的比,如下图所示:

三角函数

常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。

三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫作双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。

三角函数初中和高中都有学,初中学的比较浅,高中学得比较深。

三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。

常见的三角函数

常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数。

半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。

如下:

1、sinx,

定义域:x∈(-∞,∞);

值域:sinx∈[-1,1];

奇偶性:奇函数;

最小正周期:2π;

单调增区间:x∈(2kπ-π/2,2kπ+π/2)、单调减区间:x∈(2kπ+π/2,2kπ+3π/2),其中k∈Z(下同);

零点:x=kπ。

2、cosx,

定义域:x∈(-∞,∞);

值域:cosx∈[-1,1];

奇偶性:偶函数;

最小正周期:2π;

单调减区间:x∈(2kπ,2kπ+π)、单调增区间:x∈(2kπ+π,2kπ+2π);

零点:x=kπ+π/2。

3、tanx,

定义域:x∈(kπ-π/2,kπ+π/2);

值域:tanx∈(-∞,∞);

奇偶性:奇函数;

最小正周期:π;

单调减区间:x∈(kπ-π/2,kπ+π/2);

零点:x=kπ。

简介:

由于三角函数的周期性,它并不具有单值函数意义上的反函数。

三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。

在RT△ABC中,如果锐角A确定,那么角A的对边与邻边的比便随之确定,这个比叫做角A 的正切,记作tanA。

即tanA=角A 的对边/角A的邻边。

同样,在RT△ABC中,如果锐角A确定,那么角A的对边与斜边的比便随之确定,这个比叫做角A的正弦,记作sinA。

即sinA=角A的对边/角A的斜边。

三角函数特殊值,一般指特殊三角函数值,一般指在0,30°,45°,60°,90°,120°,150°,180°等角下的正余弦值、正切值等。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。

如下图:延伸:三角函数

三角函数是六类基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。

常见的三角函数包括正弦函数、余弦函数和正切函数。

三角函数(正弦和余弦)值在各象限的符号是怎样的

1、第一象限:正弦是正的,余弦是正的,正切是正的。2、第二象限:正弦是正的,余弦是负的,正切是负的。3、第三象限:正弦是负的,余弦是...
点击下载
热门文章
    确认删除?
    回到顶部