简述数学历史

栏目:古籍资讯发布:2023-08-05浏览:1收藏

简述数学历史,第1张

数学国古代科学门重要学科根据国古代数学发展特点分五时期:萌芽;体系形成;发展;繁荣和西方数学融合 国古代数学萌芽 原始公社末期私有制和货物交换产生数与形概念有了进步发展仰韶文化时期出土陶器上面已刻有表示1234符号原始公社末期已开始用文字符号取代结绳记事了 西安半坡出土陶器有用1~8圆点组成等边三角形和分正方形100小正方形图案半坡遗址房屋基址都圆形和方形了画圆作方确定平直人们还创造了规、矩、准、绳等作图与测量工具据《史记·夏本纪》记载夏禹治水时已使用了些工具 商代期甲骨文已产生套十进制数字和记数法其大数字三万;与此同时殷人用十天干和十二地支组成甲子、乙丑、丙寅、丁卯等60名称来记60天日期;周代又把前用阴、阳符号构成八卦表示八种事物发展六十四卦表示64种事物 公元前世纪《周髀算经》提西周初期用矩测量高、深、广、远方法并举出勾股形勾三、股四、弦五及环矩圆等例子《礼记·内则》篇提西周贵族子弟从九岁开始便要学习数目和记数方法们要受礼、乐、射、驭、书、数训练作六艺之数已经开始成专门课程 春秋战国之际筹算已得普遍应用筹算记数法已使用十进位值制种记数法对世界数学发展有划时代意义时期测量数学生产上有了广泛应用数学上亦有相应提高 战国时期百家争鸣也促进了数学发展尤其对于正名和些命题争论直接与数学有关名家认经过抽象名词概念与们原来实体同们提出矩方规圆把大(无穷大)定义至大无外小(无穷小)定义至小无内还提出了尺之棰日取其半万世竭等命题 而墨家则认名来源于物名从同方面和同深度反映物墨家给出些数学定义例圆、方、平、直、次(相切)、端(点)等等 墨家同意尺之棰命题提出非半命题来进行反驳:线段按半半地无限分割下去必出现能再分割非半非半点 名家命题论述了有限长度分割成无穷序列墨家命题则指出了种无限分割变化和结名家和墨家数学定义和数学命题讨论对国古代数学理论发展有意义 国古代数学体系形成 秦汉封建社会上升时期经济和文化均得迅速发展国古代数学体系正形成于时期主要标志算术已成专门学科及《九章算术》代表数学著作出现 《九章算术》战国、秦、汉封建社会创立并巩固时期数学发展总结其数学成来说堪称世界数学名著例分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、盈足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算加减法则、勾股形解法(特别勾股定理和求勾股数方法)等水平都高其方程组解法和正负数加减法则世界数学发展上遥遥领先其特点来说形成了筹算心、与古希腊数学完全同独立体系 《九章算术》有几显著特点:采用按类分章数学问题集形式;算式都从筹算记数法发展起来;算术、代数主少涉及图形性质;重视应用缺乏理论阐述等 些特点同当时社会条件与学术思想密切相关秦汉时期切科学技术都要当时确立和巩固封建制度及发展社会生产服务强调数学应用性成书于东汉初年《九章算术》排除了战国时期百家争鸣出现名家和墨家重视名词定义与逻辑讨论偏重于与当时生产、生活密切相结合数学问题及其解法与当时社会发展情况完全致 《九章算术》隋唐时期曾传朝鲜、日本并成些国家当时数学教科书些成十进位值制、今有术、盈足术等还传印度和阿拉伯并通过印度、阿拉伯传欧洲促进了世界数学发展 国古代数学发展 魏、晋时期出现玄学汉儒经学束缚思想比较活跃;诘辩求胜又能运用逻辑思维分析义理些都有利于数学从理论上加提高吴国赵爽注《周髀算经》汉末魏初徐岳撰《九章算术》注魏末晋初刘徽撰《九章算术》注、《九章重差图》都出现时期赵爽与刘徽工作国古代数学体系奠定了理论基础 赵爽国古代对数学定理和公式进行证明与推导早数学家之《周髀算经》书补充勾股圆方图及注和日高图及注十分重要数学文献勾股圆方图及注提出用弦图证明勾股定理和解勾股形五公式;日高图及注用图形面积证明汉代普遍应用重差公式赵爽工作带有开创性国古代数学发展占有重要地位 刘徽约与赵爽同时继承和发展了战国时期名家和墨家思想主张对些数学名词特别重要数学概念给严格定义认对数学知识必须进行析理才能使数学著作简明严密利于读者《九章算术》注仅对《九章算术》方法、公式和定理进行般解释和推导而且论述过程有大发展刘徽创造割圆术利用极限思想证明圆面积公式并首次用理论方法算得圆周率157/50和3927/1250 刘徽用无穷分割方法证明了直角方锥与直角四面体体积比恒2:1解决了般立体体积关键问题证明方锥、圆柱、圆锥、圆台体积时刘徽彻底解决球体积提出了正确途径 东晋国长期处于战争和南北分裂状态祖冲之父子工作经济文化南移南方数学发展具有代表性工作们刘徽注《九章算术》基础上把传统数学大大向前推进了步们数学工作主要有:计算出圆周率31415926~31415927之间;提出祖(日恒)原理;提出二次与三次方程解法等 据推测祖冲之刘徽割圆术基础上算出圆内接正6144边形和正12288边形面积从而得了结又用新方法得圆周率两分数值即约率22/7和密率355/113祖冲之工作使国圆周率计算方面比西方领先约千年之久; 祖冲之之子祖(日恒)总结了刘徽有关工作提出幂势既同则积容异即等高两立体若其任意高处水平截面积相等则两立体体积相等著名祖(日恒)公理祖(日恒)应用公理解决了刘徽尚未解决球体积公式 隋炀帝好大喜功大兴土木客观上促进了数学发展唐初王孝通《缉古算经》主要讨论土木工程计算土方、工程分工、验收及仓库和地窖计算问题反映了时期数学情况王孝通用数学符号情况下立出数字三次方程仅解决了当时社会需要也来天元术建立打下基础此外对传统勾股形解法王孝通也用数字三次方程解决 唐初封建统治者继承隋制656年国子监设立算学馆设有算学博士和助教学生30人由太史令李淳风等编纂注释《算经十书》作算学馆学生用课本明算科考试亦些算书准李淳风等编纂《算经十书》对保存数学经典著作、数学研究提供文献资料方面有意义们给《周髀算经》、《九章算术》及《海岛算经》所作注解对读者有帮助隋唐时期由于历法需要天算学家创立了二次函数内插法丰富了国古代数学内容 算筹国古代主要计算工具具有简单、形象、具体等优点也存布筹占用面积大运筹速度加快时容易摆弄正而造成错误等缺点因此早开始进行改革其太乙算、两仪算、三才算和珠算都用珠槽算盘技术上重要改革尤其珠算继承了筹算五升十进与位值制优点又克服了筹算纵横记数与置筹便缺点优越性十分明显由于当时乘除算法仍能横列进行算珠还没有穿档携带方便因此仍没有普遍应用 唐期商业繁荣数字计算增多迫切要求改革计算方法从《新唐书》等文献留下来算书书目看出次算法改革主要简化乘、除算法唐代算法改革使乘除法横列进行运算既适用于筹算也适用于珠算 国古代数学繁荣 960年北宋王朝建立结束了五代十国割据局面北宋农业、手工业、商业空前繁荣科学技术突飞猛进火药、指南针、印刷术三大发明种经济高涨情况下得广泛应用1084年秘书省第次印刷出版了《算经十书》1213年鲍擀之又进行翻刻些都数学发展创造了良好条件 从11~14世纪约300年期间出现了批著名数学家和数学著作贾宪《黄帝九章算法细草》刘益《议古根源》秦九韶《数书九章》李冶《测圆海镜》和《益古演段》杨辉《详解九章算法》《日用算法》和《杨辉算法》朱世杰《算学启蒙》《四元玉鉴》等多领域都达古代数学高峰其些成也当时世界数学高峰 从开平方、开立方四次上开方认识上飞跃实现飞跃贾宪杨辉《九章算法纂类》载有贾宪增乘开平方法、增乘开立方法;《详解九章算法》载有贾宪开方作法本源图、增乘方法求廉草和用增乘开方法开四次方例子根据些记录确定贾宪已发现二项系数表创造了增乘开方法两项成对整宋元数学发生重大影响其贾宪三角比西方帕斯卡三角形早提出600多年 把增乘开方法推广数字高次方程(包括系数负情形)解法刘益《杨辉算法》田亩比类乘除捷法卷介绍了原书22二次方程和1四次方程者用增乘开方法解三次上高次方程早例子 秦九韶高次方程解法集大成者《数书九章》收集了21用增乘开方法解高次方程(高次数10)问题了适应增乘开方法计算程序奏九韶把常数项规定负数把高次方程解法分成各种类型当方程根非整数时秦九韶采取继续求根小数或用减根变换方程各次幂系数之和分母常数分子来表示根非整数部分《九章算术》和刘徽注处理无理数方法发展求根第二位数时秦九韶还提出次项系数除常数项根第二位数试除法比西方早霍纳方法早500多年 元代天文学家王恂、郭守敬等《授时历》解决了三次函数内插值问题秦九韶缀术推星题、朱世杰《四元玉鉴》象招数题都提内插法(们称招差术)朱世杰得四次函数内插公式 用天元(相当于x)作未知数符号立出高次方程古代称天元术国数学史上首次引入符号并用符号运算来解决建立高次方程问题现存早天元术著作李冶《测圆海镜》 从天元术推广二元、三元和四元高次联立方程组宋元数学家又项杰出创造留传至今并对杰出创造进行系统论述朱世杰《四元玉鉴》 朱世杰四元高次联立方程组表示法天元术基础上发展起来把常数放央四元各次幂放上、下、左、右四方向上其各项放四象限朱世杰大贡献提出四元消元法其方法先择元未知数其元组成多项式作未知数系数列成若干元高次方程式应用互乘相消法逐步消去未知数重复步骤便消去其未知数用增乘开方法求解线性方法组解法重大发展比西方同类方法早400多年 勾股形解法宋元时期有新发展朱世杰《算学启蒙》卷下提出已知勾弦和、股弦和求解勾股形方法补充了《九章算术》足李冶《测圆海镜》对勾股容圆问题进行了详细研究得九容圆公式大大丰富了国古代几何学内容 已知黄道与赤道夹角和太阳从冬至点向春分点运行黄经余弧求赤经余弧和赤纬度数解球面直角三角形问题传统历法都用内插法进行计算元代王恂、郭守敬等则用传统勾股形解法、沈括用会圆术和天元术解决了问题过们得近似公式结够精确们整推算步骤正确无误从数学意义上讲方法开辟了通往球面三角法途径 国古代计算技术改革高潮也出现宋元时期宋元明历史文献载有大量时期实用算术书目其数量远比唐代多改革主要内容仍乘除法与算法改革同时穿珠算盘北宋能已出现把现代珠算看成既有穿珠算盘又有套完善算法和口诀应该说完成于元代 宋元数学繁荣社会经济发展和科学技术发展必结传统数学发展必结此外数学家们科学思想与数学思想也十分重要宋元数学家都同程度上反对理学家象数神秘主义秦九韶虽曾主张数学与道学同出源来认识通神明数学存只有经世务类万物数学;莫若《四元玉鉴》序文提出用假象真虚问实则代表了高度抽象思维思想方法;杨辉对纵横图结构进行研究揭示出洛书本质有力地批判了象数神秘主义所有些无疑促进数学发展重要因素 西方数学融合 国从明代开始进入了封建社会晚期封建统治者实行极权统治宣传唯心主义哲学施行八股考试制度种情况下除珠算外数学发展逐渐衰落 16世纪末西方初等数学陆续传入国使国数学研究出现西融合贯通局面;鸦片战争近代数学开始传入国国数学便转入学习西方数学主时期;19世纪末20世纪初近代数学研究才真正开始 从明初明叶商品经济有所发展和种商业发展相适应珠算普及明初《魁本对相四言杂字》和《鲁班木经》出现说明珠算已十分流行前者儿童看图识字课本者把算盘作家庭必需用品列入般木器家具手册 随着珠算普及珠算算法和口诀也逐渐趋于完善例王文素和程大位增加并改善撞归、起口诀;徐心鲁和程大位增添加、减口诀并除法广泛应用归除从而实现了珠算四则运算全部口诀化;朱载墒和程大位把筹算开平方和开立方方法应用珠算程大位用珠算解数字二次、三次方程等等程大位著作国内外流传广影响大 1582年意大利传教士利玛窦国1607年先与徐光启翻译了《几何原本》前六卷、《测量法义》卷与李之藻编译《圜容较义》和《同文算指》1629年徐光启被礼部任命督修历法主持下编译《崇祯历书》137卷《崇祯历书》主要介绍欧洲天文学家第谷地心学说作学说数学基础希腊几何学欧洲玉山若干三角学及纳皮尔算筹、伽利略比例规等计算工具也同时介绍进来 传入数学影响大《几何原本》《几何原本》国第部数学翻译著作绝大部分数学名词都首创其许多至今仍沿用徐光启认对必疑、必改举世无人当学《几何原本》明清两代数学家必读数学书对们研究工作颇有影响 其次应用广三角学介绍西方三角学著作有《大测》《割圆八线表》和《测量全义》《大测》主要说明三角八线(正弦、余弦、正切、余切、正割、余割、正矢、余矢)性质造表方法和用表方法《测量全义》除增加些《大测》所缺平面三角外比较重要积化和差公式和球面三角所有些当时历法工作都随译随用 1646年波兰传教士穆尼阁来华跟随学习西方科学有薛凤柞、方通等穆尼阁去世薛凤柞据其所学编成《历学会通》想把法西法融会贯通起来《历学会通》数学内容主要有比例对数表》《比例四线新表》和《三角算法》前两书介绍英国数学家纳皮尔和布里格斯发明增修对数书除《崇祯历书》介绍球面三角外尚有半角公式、半弧公式、德氏比例式、纳氏比例式等方通所著《数度衍》对对数理论进行解释对数传入十分重要历法计算立即得应用 清初学者研究西数学有心得而著书传世多影响较大有王锡阐《图解》、梅文鼎《梅氏丛书辑要》(其数学著作13种共40卷)、年希尧《视学》等梅文鼎集西数学之大成者对传统数学线性方程组解法、勾股形解法和高次幂求正根方法等方面进行整理和研究使濒于枯萎明代数学出现了生机年希尧《视学》国第部介绍西方透视学著作 清康熙皇帝十分重视西方科学除了亲自学习天文数学外还培养了些人才和翻译了些著作1712年康熙皇帝命梅彀成任蒙养斋汇编官会同陈厚耀、何国宗、明安图、杨道声等编纂天文算法书1721年完成《律历渊源》100卷康熙御定名义于1723年出版其《数理精蕴》主要由梅彀成负责分上下两编上编包括《几何原本》、《算法原本》均译自法文著作;下编包括算术、代数、平面几何平面三角、立体几何等初等数学附有素数表、对数表和三角函数表由于部比较全面初等数学百科全书并有康熙御定名义因此对当时数学研究有定影响 综上述看清代数学家对西方数学做了大量会通工作并取得许多独创性成些成和传统数学比较有进步和同时代西方比较则明显落了 雍正即位对外闭关自守导致西方科学停止输入国对内实行高压政策致使般学者既能接触西方数学又敢过问经世致用之学因而埋头于究治古籍乾嘉年间逐渐形成考据学主乾嘉学派 随着《算经十书》与宋元数学著作收集与注释出现了研究传统数学高潮其能突破旧有框框并有发明创造有焦循、汪莱、李锐、李善兰等们工作和宋元时代代数学比较青出于蓝而胜于蓝;和西方代数学比较时间上晚了些些成没有受西方近代数学影响下独立得 与传统数学研究出现高潮同时阮元与李锐等编写了部天文数学家传记-《畴人传》收集了从黄帝时期嘉庆四年已故天文学家和数学家270余人(其有数学著作传世足50人)和明末来介绍西方天文数学传教士41人部著作全由掇拾史书荃萃群籍甄而录之而成收集完全第手原始资料学术界颇有影响 1840年鸦片战争西方近代数学开始传入国首先英人上海设立墨海书馆介绍西方数学第二次鸦片战争曾国藩、李鸿章等官僚集团开展洋务运动也主张介绍和学习西方数学组织翻译了批近代数学著作 其较重要有李善兰与伟烈亚力翻译《代数学》《代微积拾级》;华蘅芳与英人傅兰雅合译《代数术》《微积溯源》《决疑数学》;邹立文与狄考文编译《形学备旨》《代数备旨》《笔算数学》;谢洪赉与潘慎文合译《代形合参》《八线备旨》等等 《代微积拾级》国第部微积分学译本;《代数学》英国数学家德·摩根所著符号代数学译本;《决疑数学》第部概率论译本些译著创造了许多数学名词和术语至今还应用所用数学符号般已被淘汰了戊戌变法各地兴办新法学校上述些著作便成主要教科书 翻译西方数学著作同时国学者也进行些研究写出些著作较重要有李善兰《《尖锥变法解》《考数根法》;夏弯翔《洞方术图解》《致曲术》《致曲图解》等等都会通西学术思想研究成 由于输入近代数学需要消化吸收过程加上清末统治者十分腐败太平天国运动冲击下帝国主义列强掠夺下焦头烂额无暇顾及数学研究直1919年五四运动国近代数学研究才真正开始 近现代数学发展时期 时期从20世纪初至今段时间常1949年新国成立标志划分两阶段 国近3年留日冯祖荀1908年留美郑之蕃1910年留美胡明复和赵元任1911年留美姜立夫1912年留法何鲁1913年留日陈建功和留比利时熊庆来(1915年转留法)1919年留日苏步青等人们多数回国成著名数学家和数学教育家国近现代数学发展做出重要贡献其胡明复1917年取得美国哈佛大学博士学位成第位获得博士学位国数学家随着留学人员回国各地大学数学教育有了起色初只有北京大学1912年成立时建立数学系1920年姜立夫天津南开大学创建数学系1921年和1926年熊庆来分别东南大学(今南京大学)和清华大学建立数学系久武汉大学、齐鲁大学、浙江大学、山大学陆续设立了数学系1932年各地已有32所大学设立了数学系或数理系1930年熊庆来清华大学首创数学研究部开始招收研究生陈省身、吴大任成国内早数学研究生三十年代出国学习数学还有江泽涵(1927)、陈省身(1934)、华罗庚(1936)、许宝騄(1936)等人们都成国现代数学发展骨干力量同时外国数学家也有来华讲学例英国罗素(1920)美国伯克霍夫(1934)、奥斯古德(1934)、维纳(1935)法国阿达马(1936)等人1935年国数学会成立大会上海召开共有33名代表出席1936年《国数学会学报》和《数学杂志》相继问世些标志着国现代数学研究进步发展 解放前数学研究集纯数学领域国内外共发表论着600余种分析学方面陈建功三角级数论熊庆来亚纯函数与整函数论研究代表作另外还有泛函分析、变分法、微分方程与积分方程成;数论与代数方面华罗庚等人解析数论、几何数论和代数数论及近世代数研究取得令世人瞩目成;几何与拓扑学方面苏步青微分几何学江泽涵代数拓扑学陈省身纤维丛理论和示性类理论等研究做了开创性工作:概率论与数理统计方面许宝騄元和多元分析方面得许多基本定理及严密证明此外李俨和钱宝琮开创了国数学史研究们古算史料注释整理和考证分析方面做了许多奠基性工作使我国民族文化遗产重放光彩 1949年11月即成立国科学院1951年3月《国数学学报》复刊(1952年改《数学学报》)1951年10月《国数学杂志》复刊(1953年改《数学通报》)1951年8月国数学会召开建国第次全国代表大会讨论了数学发展方向和各类学校数学教学改革问题 建国数学研究取现代数学开始于清末民初留学活动较早出国学习数学有:190得长足进步50年代初期出版了华罗庚《堆栈素数论》(1953)、苏步青《射影曲线概论》(1954)、陈建功《直角函数级数和》(1954)和李俨《算史论丛》(5辑1954-1955)等专着1966年共发表各种数学论文约2万余篇除了数论、代数、几何、拓扑、函数论、概率论与数理统计、数学史等学科继续取得新成外还微分方程、计算技术、运筹学、数理逻辑与数学基础等分支有所突破有许多论著达世界先进水平同时培养和成长起大批优秀数学家 60年代期国数学研究基本停止教育瘫痪、人员丧失、对外交流断经多方努力状况略有改变1970年《数学学报》恢复出版并创刊《数学实践与认识》1973年陈景润《国科学》上发表《大偶数表示素数及超过二素数乘积之和》论文哥德巴赫猜想研究取得突出成此外国数学家函数论、马尔夫过程、概率应用、运筹学、优选法等方面也有定创见 1978年11月国数学会召开第三次代表大会标志着国数学复苏1978年恢复全国数学竞赛1985年国开始参加国际数学奥林匹克数学竞赛1981年陈景润等数学家获国家自科学奖励1983年国家首批授于18名青年学者博士学位其数学工作者占2/31986年国第次派代表参加国际数学家大会加入国际数学联合会吴文俊应邀作了关于国古代数学史45分钟演讲近十几年来数学研究硕累累发表论文专著数量成倍增长质量断上升1985年庆祝国数学会成立50周年年会上已确定国数学发展长远目标代表们立志要懈地努力争取使国世界上早日成新数学大国

在中国文化发展中,我国古代数学筹算操作的机械化运演形成的计算体系来源于作为原始数学的竹棍操作运演在历史进程中的演化。

中国古代是借助于竹棍为特定物进行数字、数学操作运演的民族。中国古代数学具有外算与内算的双重功能,即“算数万物”的算术性功能和神秘主义的解释性功能(注:俞晓群,“论中国古代数学的双重意义”,载《自然辩证法通讯》,1992年第4期。)。竹棍既是中国原始计数物又是某些神秘性的表示物。例如中国原始巫术中的蓍草就是运用竹棍或类似竹棍的排演操作来表现某种神秘性的。《周易》中的揲蓍之法就是一种有代表性的原始数学的操作运演,只不过它表现的是神秘性的解释形式。与古希腊以一种理性表现自己的解释力量,以脱离具体事例而表现自己的数量解释意义不同,中国原始数学从一开始就把自己的神秘性、数量性特征蕴含在由竹棍的排演形式之中,是一种由以神秘性为主要特征的竹棍占卜的《周易》竹棍排演体系,逐步演化为以数量性特征为主而形成的筹算的运演体系,依靠编造某类具体实际生产、生活中的例子来表现自己的数量运演作用。中国原始竹棍排演的这种转变,使筹算失去了神秘性的主体地位,从而也失去了可能作为宗教与哲学的思维性的研究方向,因而筹算不可能具备西方数学那种用数学理性解释一切的价值取向,而在中国文化的特定氛围中,筹算主要是作为纯数量意义的运演而成为适应这种文化意义的一种技艺,并发展成为一种计算运演发达的技术。从文化系统角度来看,筹算是一种用数量变化意义来解释实际问题的操作运演的应用子系统。筹算一般不直接参与理性的描述,可以说,在中国文化中,它长于对“形而下”的问题作分门别类的数量的解释,为解决问题而制定各种算法,并常常将“理”寓于“法”中,算理结合、寓理于算的特征赋予筹算解释“形而上”问题的文化功能。因此,数学的价值观念是通过发展技艺实用,而非理性思辨。刘徽在《九章》注的序中把筹算处于《周易》解释意义之下的技艺应用地位说得十分清楚:“昔者包牺氏始画八卦,以通神明之德,以类万物之情,作九九之术以合六爻之变。”中国文化中,筹算的价值取向就是作为“六爻之变”意义基础上的应用技艺,并以快速、准确、简洁解决具体问题来发展自己的操作运演。

因此,中国古代数学不仅未形成以宗教、哲学的层次思辨自己的方法、结构形式,而是形成了专司具体数学问题的特征。中国古代数学在文化传统中的价值取向就是在筹算运演机械重复的条件下尽力构造简明的运演方法,准确迅速地解决实践提出的具体问题。

中国传统的价值观念以及筹算的技艺型价值取向,决定了中国古代数学的发展和构造模式,这种筹算数学的价值取向保证了中国古代数学机械化特色的发展方向,注重数学实际应用的层次不断发展,机械化的计算技术和水平不断提高。中国古人借助于算筹这一特殊工具,将各种实际问题分门别类,进行有效的布列和推演,在比率算法、“方程”术、开方术、割圆术、大衍求一术、天元术、四元术、垛积招差术等等方面都取得辉煌成果,在宋元时期数学达到高潮。元代以后发展的珠算制是筹算制的发展改革和继续,可以说,中国传统数学在数量关系上是以算筹制为主线贯穿一起,以提高机械化的计算技术来解决实际问题为目标的。同时,文化价值观的传统特点也造就了一批传播和发展作为技艺数学的群体,这是促进数学机械化发展的人才优势,尤其是在相对稳定的文化环境中,其传统价值观念发挥了重要作用。

本系列博文试图从“普通人”(指那些不从事数学研究、数学教学等与数学直接相关行业的人们)的视角探讨数学文化为了适合这些人的数学基础,力争

不以过高深的数学知识为载体

,希望具有初中知识就能读懂

“数学文化”一词的出现不过20年左右,并且是逐渐进入普通人的视野的我说的“普通人”是指那些不从事数学研究、数学教学等与数学直接相关行业的人们越来越多的人开始关注“数学文化”一词,并试图了解它的准确含义,这说明它是有生命力的,也说明人们已经愿意从文化的角度关注数学,更愿意强调数学的文化价值

数学本来就是与人们联系最紧密的一个知识领域,一个“学科”它与“语文”一样,被认为是学习其它学科的基础和工具,也是人们生活的最基本的技能有人甚至说,一个人如果“不识数”要比“不识字”还难以在社会上生活,可见数学基础知识的重要

但是说到“数学文化”,大多数人还是很难对它有一个明晰的认识数学文化当然不是指数学知识,不但不是指“识数”、“算术”这样最基础的数学知识,而且也不是指“几何”、“代数”、“微积分”以及更高深的数学知识

一般认为,数学文化是指数学的思想、精神、方法、观点、语言以及它们的形成和发展广义上还包括数学家、数学史、数学美、数学教育、数学发展中的人文成分,

还包括数学与社会的联系、数学与各种文化的关系,等等

有一个比较直观的说法:当一个人学习了许多数学知识以后,如果把所有的数学知识都忘掉或都“抽出去”,剩下的就是数学文化而这些数学文化在人的头脑中落户,则形成一个人的“数学素养”

因此,学习数学知识的目的,并不全在于它的应用,因为事实上,的确是大多数人学了高等数学以后,一辈子都没有用到那些知识,那些概念、定理、公式几乎都忘了,甚至中学学到的数学知识也有很多没有用到过但是他们在学习过程中所得到的训练,使其思维更具条理性、敏捷性、深刻性,他们会有更多的思考方式来解决问题,他们比没有学过这些数学知识的人要“聪明”许多,这就是数学文化在起作用

数学文化已经引起教育界以及政府部门的高度重视,很多大学已经开设“数学文化”课程,《普通高中数学课程标准(实验)》(教育部2003年颁发)已经正式把数学文化做为新的重要的活动内容专门提出,义务教育阶段的数学课程也越来越重视数学文化的渗透

说到这里我还想到,竟然有人提议高中文科学生可以不学数学,这显然不仅是荒谬的,而且是与素质教育思想背道而驰的,甚至是“反智主义”

制作数学书签可以使用一些简单的工具和技巧,来实现漂亮和简单的效果。以下是一些建议步骤:

1选择适当的颜色和图案:

可以在彩色卡纸上或白纸上绘制各种数学符号和图案,并根据自己的喜好选择颜色。你也可以使用剪贴艺术或印章等装饰品。

2切割卡纸或纸张:

将纸张或彩色卡纸切成合适的尺寸,以适应书页大小。

3折叠和进行卷曲:

将切割的纸张折叠成三角形或矩形,使其可以被置于书页边缘。你也可以将它们卷曲成螺旋形或其他形状以增加视觉吸引力。

4加入标记:

可以在线下载或创建某些标签,如“函数”,“等式”或“公式”。这有助于使书签易于识别,并帮助用户快速找到书页上的重要部分。

5涂上保护涂料:

最后,可以在表面涂上保护水性涂料,以防止书签在使用过程中磨损和破损。

总的来说,如果你在设计和制作数学书签时发挥创造力,使用适当的工具和技巧,你可以实现漂亮和简单的效果。

如下:

用作题写书名的,一般贴在古籍封皮左上角的,有时还有册次和题写人姓名及标记阅读到什么地方,记录阅读进度而夹在书里的小薄片儿,随着网络时代的发展,又衍生出电子书签等,以记录阅读进度和心得。

书签画面随意,取材广泛,哪怕是一张用过的火车票、飞机票都可以当作书签,除图面内容外,艺术化的书签也常在材料和造型上有所创新。书签比折书等记页码方式更方便,对书的损坏度更低,是很好的一种记页码方式。

书签除采用纸制作以外,还可采用优质的纯铜、锌合金原材料,有镀镍烤漆、镀沙镍、仿古铜、移印、镀金烤漆、双色电镀、镀镍珐琅、镀镍镶嵌等工艺精致而成。这种被称为金属书签,是书签发展历程中的一种创新。庙会的时候,可以看见很多脸谱金属书签,那是代表了中国的传统文化。

中国古代数学的构造性、机械化的算法体系完全有别于以古希腊为代表的西方数学的逻辑风格和演绎体系。为什么会出现这两种不同风格的数学体系、数学思想?难道是民族智力差异所造成的?答案当然是否定的。数学文化史的研究表明,在人类文化发展过程中,每一种文化系统都有其特定的数学发展和构造模式,数学既是在某个文化系统中发生发展的必然产物,又是文化系统中一种文化的特定的表现形式,不同的文化传统会形成不同形式的数学与科学技术的结构形式。因此可以说,中西文化传统的差异造成了中西古代数学思想以及数学结构形式的差异。换句话说,文化传统往往规定了数学发展的必然取向。

一、从中西古代数学文化史的比较意义上分析,形成中西古代数学的两种倾向:逻辑演绎倾向和机械化算法倾向,其作用与构造差异主要是由文化系统赋予的文化层次及其价值取向的差异造成的,这两种倾向的对立统一就构成了数学自身内在的矛盾运动和发展动力。

数学文化史的研究表明,人类古代数学作为文化系统中一个操作运演的子系统,从一开始就具有双重功能(或称为双重特性),即数量性的功能和神秘性的功能(注:王宪昌,《数学与人类文明》,延安大学出版社,1990年第58-70页。)。而不同民族文化中的数字或数学都在特定的文化氛围中有某些神秘性,而且不同民族文化中的数学神秘性发展的道路是各不相同的。

在古希腊文化的发展中,原始数学始终沿着神秘性和数量性的双重功能统一性继承的轨道向前发展。古希腊数学与神秘性的结合,使得他们从宗教、哲学的层次追求数学的绝对性以及解释世界的普遍性地位,这正是古希腊数学完全脱离实际问题,追求逻辑演绎的严谨性的文化背景。

古希腊人在从蒙昧走向文明的过程中,于公元前8世纪丢掉他们的象形文字而采用腓尼基的拼音字母时,就吸收了埃及与巴比伦的数学成果,这时的古希腊数学,实际上是古希腊原始数学神秘主义与埃及、巴比伦的数学的结合体,这种结合创造了数学体系、数学运演与数学方法的广泛的神秘解释作用。这种文化传统正是古希腊数学具有强烈的神秘作用以及后来具有宗教、哲学特征的根本原因。毕达哥拉斯学派就已将数学着上宗教色彩,其“万物皆数”和追求“数的和谐”观念把数学的这两种功能牢牢地结合在一起,并使之运演操作,共同发展。到了古希腊最有影响的大哲学家柏拉图的唯心主义哲学,把数学的神秘性及数量性意义演化为一种哲学意义的数学理性,直到亚里士多德认为“数就是宇宙万有之物质”(注:亚里士多德,《形而上学》,中译本,商务印书馆,1984年,1986a。),古希腊借助于数学解释一切的文化传统使数学成为具有文化意义的理性基础。古希腊与西方的天文、医学、逻辑、音乐、美术、宗教、哲学中,数学都在发挥着理性的解释作用,并随着西方文化的发展而不断得以继承和强化。基督教神学逐渐吸收了古希腊用数学解释世界的文化传统,在托马斯·阿奎那(1225-1274)的努力下,把以数学为理性模式的自然科学以及由数学而产生的各观念都与神学结合起来,使得数学成为当时自然知识和神学相结合的这座大厦的基石(注:丹皮尔,《科学史》,商务印书馆,1975年第13页。)。文艺复兴时期对古希腊数学理性的归复使欧洲人知道了自然界是按照数学方式设计的,数学被认为是唯一的真理体系。“这个理论鼓舞了十六、十七甚至一些十八世纪的数学家的工作。寻找大自然的数学规律是一项虔诚的工作,是为了研究上帝的本性和做法以及上帝安排宇宙的方案”(注:M克莱因,《古今数学思想》,中译本,上海科学技术出版社,1979年第252页。)。直到今天,西方著名科学哲学家波普尔还认为《几何原本》是一种对当时宇宙理论、物理理论给出“一切物理解释和论述的基本工具”(注:波普尔,《猜想与反驳》,上海译文出版社,1986年第123页。)。英国哲学家兼数学家罗素认为在西方文化中“数学是我们信仰永恒的与严格的真理的根源。”(注:罗素,《西方哲学史》(上),商务印书馆,1983年第64页。)他进一步总结指出:“数学与神学的结合开始于毕达哥拉斯,它代表了希腊、中世纪的以至直迄康德为止的近代的宗教哲学的特征。”(注:罗素,《西方哲学史》(上),商务印书馆,1983年第64页。)

因此,从数学文化史的意义上分析,发端于古希腊的西方数学不仅仅是一个数学意义的运演操作系统,更主要的是它作为一种文化系统中起主导作用的理性解释系统,或者称之为一种理性构造的规范模式。在西方文化中,西方数学解释宇宙的变化,引导理性的发展,参与物质世界的表述,任何学科的构建都必须按照文化理性的要求模仿和运用数学的模式。用数学解释一切是西方数学在与其适应的文化获取的价值观念。

在中国文化发展中,我国古代数学筹算操作的机械化运演形成的计算体系来源于作为原始数学的竹棍操作运演在历史进程中的演化。

中国古代是借助于竹棍为特定物进行数字、数学操作运演的民族。中国古代数学具有外算与内算的双重功能,即“算数万物”的算术性功能和神秘主义的解释性功能(注:俞晓群,“论中国古代数学的双重意义”,载《自然辩证法通讯》,1992年第4期。)。竹棍既是中国原始计数物又是某些神秘性的表示物。例如中国原始巫术中的蓍草就是运用竹棍或类似竹棍的排演操作来表现某种神秘性的。《周易》中的揲蓍之法就是一种有代表性的原始数学的操作运演,只不过它表现的是神秘性的解释形式。与古希腊以一种理性表现自己的解释力量,以脱离具体事例而表现自己的数量解释意义不同,中国原始数学从一开始就把自己的神秘性、数量性特征蕴含在由竹棍的排演形式之中,是一种由以神秘性为主要特征的竹棍占卜的《周易》竹棍排演体系,逐步演化为以数量性特征为主而形成的筹算的运演体系,依靠编造某类具体实际生产、生活中的例子来表现自己的数量运演作用。中国原始竹棍排演的这种转变,使筹算失去了神秘性的主体地位,从而也失去了可能作为宗教与哲学的思维性的研究方向,因而筹算不可能具备西方数学那种用数学理性解释一切的价值取向,而在中国文化的特定氛围中,筹算主要是作为纯数量意义的运演而成为适应这种文化意义的一种技艺,并发展成为一种计算运演发达的技术。从文化系统角度来看,筹算是一种用数量变化意义来解释实际问题的操作运演的应用子系统。筹算一般不直接参与理性的描述,可以说,在中国文化中,它长于对“形而下”的问题作分门别类的数量的解释,为解决问题而制定各种算法,并常常将“理”寓于“法”中,算理结合、寓理于算的特征赋予筹算解释“形而上”问题的文化功能。因此,数学的价值观念是通过发展技艺实用,而非理性思辨。刘徽在《九章》注的序中把筹算处于《周易》解释意义之下的技艺应用地位说得十分清楚:“昔者包牺氏始画八卦,以通神明之德,以类万物之情,作九九之术以合六爻之变。”中国文化中,筹算的价值取向就是作为“六爻之变”意义基础上的应用技艺,并以快速、准确、简洁解决具体问题来发展自己的操作运演。

因此,中国古代数学不仅未形成以宗教、哲学的层次思辨自己的方法、结构形式,而是形成了专司具体数学问题的特征。中国古代数学在文化传统中的价值取向就是在筹算运演机械重复的条件下尽力构造简明的运演方法,准确迅速地解决实践提出的具体问题。

中国传统的价值观念以及筹算的技艺型价值取向,决定了中国古代数学的发展和构造模式,这种筹算数学的价值取向保证了中国古代数学机械化特色的发展方向,注重数学实际应用的层次不断发展,机械化的计算技术和水平不断提高。中国古人借助于算筹这一特殊工具,将各种实际问题分门别类,进行有效的布列和推演,在比率算法、“方程”术、开方术、割圆术、大衍求一术、天元术、四元术、垛积招差术等等方面都取得辉煌成果,在宋元时期数学达到高潮。元代以后发展的珠算制是筹算制的发展改革和继续,可以说,中国传统数学在数量关系上是以算筹制为主线贯穿一起,以提高机械化的计算技术来解决实际问题为目标的。同时,文化价值观的传统特点也造就了一批传播和发展作为技艺数学的群体,这是促进数学机械化发展的人才优势,尤其是在相对稳定的文化环境中,其传统价值观念发挥了重要作用。

从文化价值系统发展的阶段分析,我国的筹算体系和模式在宋元时期达到数学的高峰在很大程度上是算法机械化达到最高水平。贾宪三角和增乘开方法是对《九章》以来开方程序的重大提高和创造,秦九韶的正负开方术又把增乘开方法发展到十分完备的境地,其大衍求一术也是在历代对“上元积年”推算基础上将“物不知数”问题解法发展到最一般的机械化程序。李冶的天元术更是对列方程算法的重大改进和突破,同时也是几何代数化思想的完美体现。从天元术到四元术,是解一般高次方程向多元高次方程组发展的必然结果和要求。因此,我国在宋元时期算法机械化达到空前的高水平,是与传统数学文化价值观的要求相一致的,是我国筹算文化排列模式和变换技术长期积累后的自然发展,它是我国筹算体系下的数学计算以快速、准确、简洁解决一类具体问题而发展自己的操作运演的必然趋势和结果。

当然,中国古代数学并非没有理性研究和创造。中国古代数学的筹算体系和机械化特色,决定了它不可能形成如同欧几里德《几何原本》那样完整的演绎逻辑系统,而由于筹算本身的直觉启示、模型构造性特点以及特殊的运演排列的结构和形式,决定了中国古代数学是以解决实际问题为目的的抽象模型化方法、化归方法,概括出一般原理、原则用以解决一大类问题的归纳和演绎方法相结合的有机统一,决定了中算的“寓理于算”、算理结合的主要特色。由于中算的“寓理于算”常常是将“理”寓于“法”中,许多中算算法如更相减损术、变分术、盈不足术、割圆术、方程术、大衍求一术等等,算法步骤精细,一步一步推导十分明确,有“不证自明”的效用,而对几何问题同样是采取几何代数化的形数结合,“寓理于算”。开平方、开立方和解高次方程的方法,都由几何模型导出,从图验法到宋元算家的演段法,其本质相同,但更测重于阐明算法的合理性而不是阐明几何关系。

二、评判中国古代数学时不应当依据西方数学的评价模式和价值标准

由上文对中西古代数学文化史的比较意义上分析,中西古代数学的作用与构造差异主要是由文化系统赋予它的文化层次及其价值取向的差异造成的,可以说,西方数学著作的构造模式及其理性作用是不会在中国文化中出现的,因此,在古今数千年的数学发展中,形成不同时期、不同地域的中西数学的两种倾向:逻辑演绎倾向和机械化算法倾向都是历史文化中的必然。以古希腊欧几里德《几何原本》为代表的逻辑演绎倾向和以《九章算术》为代表的机械化算法倾向交互作用,“轮流执政”,共同以各自的构造模式、思维方式、运演规律及结构特征对世界数学的发展作出了贡献。

从数学文化史的角度来说,中国技艺应用型的操作运演系统蕴育了中国古代数学算法机械化的成功。中国数学以区别于西方数学的独特风格和特点,在中世纪世界数学史、文明史上,灿烂的古希腊数学衰落之后,曾一度占据了世界数学研究的重心,直到14世纪初。中国传统数学的辉煌成就标志着筹算体系下的机械化算法的巨大成功,而元中期珠算盘和珠算术的应用和发展是我国机械化算法体系的继续,它是对算筹计算工具的重大改进和发展,是对计算技术改革的历史必然。珠算的普及应用,大大提高了计算速度和效率,简化了机械化的操作程序和繁琐步骤,适应了农业、手工业、商业的发展对数学中大量繁杂计算的实际需要,因此,算盘和珠算术的出现和普遍应用及其发展,同样既是中国传统数学的独特创造的伟大发明,同时又是对世界科技和文明的重大贡献。

然而,在对待中国传统数学和西方数学对世界科技和文明所作出的贡献这个问题上,长期以来,人们使用的数学评判标准多数却是在西方数学中形成的西方中心论。这种中心论者认为当代数学的巨大成就是沿着自古希腊人以来所走过的唯一一条王者之路而发展来的。没有达到严格演绎的知识不能算为科学,只有西方数学与其他学科的关系是近代科学发展的关键性的必要条件。

西方中心论的评判标准的理论基础是西方数学哲学,自觉或不自觉地把西方数学的模式思维方式和价值标准,作为评价世界上不同国家和地区数学(包括中国的传统数学乃至东方数学)与科学的唯一标准。从数学文化史的研究表明,在对待中国古代数学与其他自然科学的基础上,这种判断和比较不是在对中国古代数学理性思辨的基础上形成的,忽略了中国竹棍式数学演化流变的文化特征与西方数学的文化差异,这种中西古代数学的简单化的直接比较,会把人们至少在两个问题上引入误区:

其一,运用西方数学价值观来评判中国古代数学,混淆了中西古代数学的文化层次差异和价值取向的差异,这就变相否定了中国古代文明创造筹算的过程及其结构形式的文化意义,从而否定了中国古代作为筹算体系下的算法机械化的数学及其成就。

从西方数学的模式来论断筹算在人类文明和近代科学发展中的作用,至少存在如下三个方面的理论困难:

首先,一些受西方中心论或其变种影响的学者,在不顾起码的编年史,及一种数学内容在不同文化传统下的不同表现形态而制造出各种中学西源说的神话,以试图将中国排除在世界数学发展主流之外的同时,认为只有达到严格演绎的知识才能算为科学,照此而言,今天的物理学和化学就算不得科学,这当然是不合理的。其实,就是具有西方数学价值观念的李约瑟博士,也对西方数学模式的价值观心有疑虑,在比较中西古代数学时,李约瑟明确表示:“科学史家现在已开始怀疑,希腊的科学和数学偏爱抽象、演绎和纯理论,而忽视具体、经验和应用,这是不是一种进步。”(注:李约瑟,《中国科学技术史》(第三卷),科学出版社,1978年第93页。)

其次,认为西方数学在文化系统中的作用(文化层次及价值取向)是通向当代数学的唯一一条王者发展之路这一假设,并没有经过检验和证明,以此评判算筹的作用,是在没有充分认识到算筹和筹算的文化意义的前提下的一种轻率的以至于武断的结论,其实质是彻底否定算筹和算筹体系下的整个中国古代数学,这种简单意义上的比较研究方法当然缺乏人类学意义上的客观性和公允性。事实上,作为人类数学的发展道路之一,中国古代数学思想在数学的历史以及在现代的数学思想中具有不可忽略的重要地位。中国古代数学不仅同古希腊数学一样代表了不同文化传统的数学形式,而且也是人类数学的一种不可缺少的思想方法,是数学家遵循的重要数学思维形式。因为从根本上说,筹算是一种计算形式的数学,在计算性数学的意义上,计算和逻辑证明是人类数学的两大特征,尽管逻辑证明在西方数学中占主导地位,但从西方数学发展史上可以看出计算所扮演的角色及其发挥的重要作用。笛卡尔的解析几何学就是计算运用所获得的巨大成功,在数学史上具有里程碑式作用的微积分,也是对无穷小量计算的结果。至于现代计算数学、计算机数学的发展则更可以说明在数学发展史的作用了。因此,我们认为计算体系的数学以及由此而形成的数学思想方法对整个人类数学的发展产生了重大的影响。

再次,从数学文化的功能来分析,筹算运演与演绎证明追求的目标有明显的差异。筹算不用思辨自己的方法的绝对性以及宗教、哲学意义的解释性,筹算只关心对确定问题的解答,只追求在解决实践问题时的快速、准确、无误和简明,它把自身的特点和优势发挥到最大限度。认为只有西方数学与其他学科的关系是近代科学发展的关键性的必要条件,实际上是在没有思辨筹算文化意义的前提下,把中国筹算根本不存在的文化功能作为一种抑制近代科学发展的因素,由此必然会导出这样一个结论:中国古代文明创造的并不断发展的筹算基础上的算法机械化的数学,从一开始就是一种带有严重缺陷的体系,是天生的“畸形儿”,从而中国文明创造筹算的意义以及筹算对中国文明的作用都被淡化乃至变相否定了。

其二,以西方数学的理性功能评判筹算,把筹算在中国文化中的理性作用否定了。

数学文化史的研究表明:筹算是由竹棍运演的原始数学发展而来的,算筹的前身很可能是古代卜筮用的蓍草,后来改为竹制的小棍,称为策(注:刘钝,《大哉言数》,辽宁教育出版社,1995年第37页。)。中国文化对筹算的选择同古希腊文化对数学的选择是相同的,都是表现了文明进程中对原始数学的神秘性功能和数量性功能的一种崇拜性的文化心理,这是两种文化在选择神秘性作为解释形式时具有的内在一致性。但是,作为差异,古希腊的文化氛围使它们强化了对数学理性的一贯的连续的整体性信仰,并发展成为用数学理性解释一切的价值取向;而中国的文化氛围使其强化了由对原始数学竹棍排演形式本身的神秘性信仰(《周易》64卦的运演形式)向筹算位置模式的转化,并最终使筹算以内蕴性的方式表达数学理性,算理结合,寓理于算,不证自明的特性赋予筹算解释和说明“形而上”问题的文化功能。中国古人产生以方向、位置模式表示不同的数学意义这种十分独特的数学思想方法,发展到筹算通过筹式表达,可以起到形式化数学语言的作用,用于间接说明算法的合理性。同时由于筹算位置思维侧重于形象思维,中国位置化的筹算模式具有直觉思维启示的功效,更容易发挥其直观、形象、简洁、方便的优点,这本身又是与中国古算机械化讲求效率、注重结果、推崇算法的简洁、直接和统一和谐一致的。

从人类文明进展选择理性方式作为解释形式的意义上分析,一种古代文明选择数学的数字、几何图形的解释方式还是选择数字运演形式本身的解释方式,实际上并不存在优劣、高下之分,它只是表现了人类不同文明进程的差异而已。西方数学理性解释的形式,不仅否认了筹算作为导源于《易经》的数学运演操作意义,而且也否认了中国文明的在选择和运用这种理性解释系统时的文化创造意义,更为重要的是,否认了《周易》和筹算在中国古代文明中的意义就使中国文明成为一种缺乏理性背景的从一开始就注定是永远落后的一种人类文明。应当特别指出的是,如此评价两种古代文明中同类学科的意义,就会产生N席文批评的那种结果,即世界科学史成了欧洲的成功史和非欧文明的失败史,即使非欧文明在历史上有过成就,但在科学近代化带来复兴之前,也只不过是暂时的并且带有内在缺陷的成就(注:N席文,《为什么中国没有发生科学革命》,载《科学与哲学》,1984年第1期。)。

总之,中西古代数学在其民族文化中价值观念的差异,是我们数学史研究中应当十分注意的问题。在人类文化史中,人们可以发现每一种文化系统都有其特定的数学发展和构造模式,对人类古代数学的比较,应从不同文化系统的数学模式中,提炼出人类古代数学的共有规律,并以此为价值尺度来客观、公正地评价。中国古代数学是在中国文化中产生发展的,它不会也不可能按照西方数学的模式来发展,因此我们评判中国古代数学时就不应当照搬西方数学的评价。

在中西文化的差异中,我们深刻地体会到,西方数学的模式不会也不可能是人类数学的唯一发展模式,西方数学的价值标准不应该实际上也不可能成为人类古代数学唯一的评价标准。这正如像N席文提问的那样:“为什么评判非欧文明史总是以其是否或接近于欧洲早期科学或近代科学的某些方面为试金石,为什么早期欧洲科学无需检验呢?”(注:N席文,《为什么中国没有发生科学革命》,载《科学与哲学》,1984年第1期。)

  一  无疑,从不同角度看,数学具有多重身份和角色:数学是一门工具、是一种语言、是一门科学、是一种文化……事实上,在过去的时间里,我们已经有意或无意地践行着作为工具的数学、作为语言的数学、作为思维模式的数学,等等。本文试图转变视角,从文化的视角重新观照并确认数学的本质,尝试在实践层面上给出一些肤浅的、更接近数学本意的表达。

从作为工具、语言、思维模式的数学,转而走向作为文化的数学,视角转换的背后折射出的是认识和理解的差异。所谓认识决定行动。因而,本文愿意首先对什么是“文化”,数学是否“作为一种文化”作一些简单探讨与说明。

2001年颁布的数学课程标准明确指出:数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。无疑,这一论述让我们对数学有了重新思考的可能,也给我们的数学教学实践提出了新的课题。随之而来的关于“数学文化”的热烈、持续的探讨,恰是一种必然的呼应。然而,令人遗憾的是,课程标准并没有对文化乃至数学文化给出明确的界定。并且,理论的缺席已经给实践带来消极影响,澄清认识似乎已成当务之急。否则,实践上必难有深入的跟进。

“文化”是我们十分熟悉而其内涵又颇为丰富、复杂的一个科学概念。在我国古代典籍中,“文化”指“文治教化”“礼乐典章制度”等,前者用作动词,后者为名词。现代意义上的“文化”,是由西方引进的。对于“什么是文化”这一问题,叶志良先生在《大众文化》中的如下表述极具代表性:“每个试图对文化作出界定的人,都可以在自己的学科视野、知识背景、学术立场、社会环境等基础上,对文化的定义提出自己的见解。20世纪60年代,著名文化学家阿尔弗雷德・克洛依伯克莱德・克勒克荷恩在《文化:概念和定义述评》中曾经列出160余种文化定义。”上述论断足以说明,文化正像钱钟书先生所讲的“你不说我还清楚,你越说我越糊涂”的那类概念。

尽管如此,如下对文化的广义定义,依然在国内得到了多数人的认同。“所谓文化,是指人类社会历史实践过程中所创造的物质财富和精神财富的总和。”撇开其中物质层面的文化不谈,与此相关的另一有关文化的定义,同样得到大众的广泛认可。即“所谓文化,是指一定社会群体创造、习得且共有的一切观念和行为”。

回到数学问题上来。数学“是人类社会历史实践过程中所创造的物质或精神财富”吗?进而,数学可以看作是“一定社会群体创造、习得且共有的观念和行为”吗?答案无疑是肯定的。至此,数学“作为一种文化”的身份得以确立:数学的确是一种文化。进而,为了区别于其他文化,我们把数学这一文化类别称作数学文化。这就是数学文化的由来。

明确了什么是文化,随之而来的问题是,与其他文化分支相比,数学文化的独特性及价值表现在哪儿?换言之,什么是数学文化,数学文化的价值又在哪里?对此,笔者十分赞同南京大学哲学系教授郑毓信给出的观点。“所谓数学文化,是指以数学家为主导的数学共同体(需要提及的是,在某种意义上,普通大众同样也是数学共同体重要的成员,他们在数学的创造、发展、进步等过程中,有着不可或缺的作用)所特有的行为、观念、态度和精神等,也即是指数学共同体所特有的生活或行为方式,或者说是特定的数学传统。”事实上,细心的读者一定已发现,这一对数学文化的界定,恰恰是上述文化定义的自然延伸与具体化,可谓是一脉相承。

乍一看,对数学文化的这一界定的确有点玄。事实上,笔者在与教师交流这一观点时,的确也从教师那儿获得了类似的反馈。但稍作深入思考后,问题似乎并不难理解。众所周知,数学不是纯客观的存在,而是人类思想领域的一种创造(尽管其原型或许来自于客观现实)。就像我们能看到1个人、1棵树、1朵花,却永远看不到抽象的数“1”;我们能找到像硬币、钟表、桌子、光盘等不计其数的具有圆形轮廓的物体,却永远不可能在现实世界中找到真正意义上抽象的平面图形“圆”,诸如此类。数学既然是一种创造物,那么,在其被创造的过程中,数学势必会印上其创造者(以数学家为代表的数学共同体)鲜明的烙印。他们的行为、观念、态度和精神势必会以一种独特的方式存在于数学之中,成为“投射”并“凝聚”于数学之中的重要因子。或许,呈现在我们面前的数学,通常只是些可视的、物态层面的内容(诸如数字、符号、公式、结论等),但凝聚于这些物态层面的数学背后的,正是那些以数学家为代表的数学共同体成员在从事数学创造、研究、学习、思考时所特有的思维方式、行为准则、精神气质、价值观念以及人格特征等。

事实上,如此情形也并非仅仅出现在数学这一文化现象身上。任何一种文化,在其被创造的过程中,势必都会凝聚其创造者(从更一般的角度看,则应是创造者共同体)的观念、态度、精神及气质,比如文学、艺术、历史等。只是,不同的文化,在其被文化主体缔造的过程中,所融入的思维方式、行为准则、精神气质、价值观念等不尽相同。比如,数学作为一种文化,其所折射出的精确、抽象、公理化的思维方式,务实求真的理性精神,不断超越及自我否定的创新气度,以及对简洁、对称、和谐、秩序等独特美感的敏锐洞察,等等,却是其他所有文化门类中所鲜有的。而这,正是数学所蕴涵着的更为丰富、广远的文化价值,也是我们的教学实践在彰显了数学的工具价值之后,更需着力开掘的文化宝藏。

明确了什么是数学文化,并探明数学文化的独特价值后,作为文化的数学及其教学只是具有了实现的可能。实践层面上,我们还需要着重并审慎提出的问题是,如何实现由“作为工具的数学”向“作为文化的数学”的切实转变?这才是最核心的问题,并真正关乎实践。

事实上,伴随着新一轮课程改革,尤其是随着课程标准对“数学是一种文化”的准确表述,实践层面对数学文化的探索十分密集,甚至曾一度达到“数学课堂言必称文化”的境地。问题也随之而来。

关于数学文化的探索与实践,发端于数学史在教学中的介入。无疑,这是一种有益的尝试。并且,由于数学史的介入给以“工具、推理、训练”为核心的数学课堂注入了活力,对数学发展历史的回顾也就改变、丰富了学生对数学的认识。数学原来并非只是一堆无意义的符号、数字、公式的堆砌,并非只是孤僻的数学家们闭门造车、无端臆想的结果,数学原来也关乎人性与道德、精神。数学在其发展历程中,也有着动人心魄的思想冲撞与对话。

当然,所有这一切得以实现的前提是,数学史料并不只是作为一种外在于数学的“趣闻轶事”附加到课堂上。数学史料的展开、还原、解密等,是数学史料之文化价值得以最大化实现的重要策略。在此,笔者愿意援引席争光老师“圆的周长”一课对数学史料的开掘作为例证,以说明上述问题。

通常,“祖冲之及其对圆周率研究至小数点后第七位”的史料,都会出现在本课教学中。但不同于其他教师简单呈现数学史料的方法,席老师的处理别具一格――

师:早在2000多年以前我国的一本数学专著《周髀算经》中就有“周三径一”的记载,(播放课件)周三径一,意思就是说,圆的周长总是直径的3倍,我们得出的结论是――

生:圆的周长和直径的比值是三点多。

师:很不简单嘛!这个结论在当时的生产生活中发生了巨大的作用。随着生产生活的不断进步,这个结论已经不能适应生产生活的需要了。为此,我国的数学家又用了新的方法来研究,同学们想了解一下吗?

生:想。

师:在这幅图中都有哪些图形?

生:圆和正6边形。

师:观察正6边形的边长和圆的半径的长度,你有什么发现?

生:正6边形的边长和圆的半径相等;正6边形的周长是半径的6倍、直径的3倍;圆的周长比直径的3倍多一些。

师:注意观察,(课件演示:在圆内接正6边形的基础上,出示圆内接正12边形)比较正12边形和圆的周长,你有什么发现?

生:正12边形的周长还是比圆的周长少,但比正六边形更接近圆的周长。

师:接着观察,(课件以类似方法呈现圆内接正24边形、正48边形)你又有什么新发现?

热门文章
    确认删除?