中国古代是谁发明筷子?
大禹为传说的中国用箸第一人 我国东北有一则民间传说,相传大禹在治理水患时三过家门而不入,都在野外进餐,有时时间紧迫,等兽肉刚烧开锅就急欲进食,然後开拔赶路。但汤水沸滚无法下手,就折树枝夹肉或粉粢(米饭)食之,这就是筷箸最初的雏形。传说虽非正史,但因熟食烫手,筷箸因运而生,这是合乎人类生活发展规律的。 《礼记》郑注云「以土涂生物,炮而食之」。这是把谷子以树叶包好,糊泥置火中烤熟。有专家认为这种烤食法也推动了箸之形成。当先民把包好涂泥的谷粒置火灰中烤时,为使其受熟均匀,不断用树枝拨动,我们聪明祖先也就是在拨动原始爆米花的过程中得到启发,天长日久,筷箸的雏形也渐渐地在先民手中出现。 这当然是推测,因为新石器时代末期进入到夏禹时代还没有文字,当时无法记录箸之发明过程,但饮食专家的这些推测是不无科学道理的。 《韩非子·喻老》称筷为「箸」,这再次佐证筷最初是以木竹为材质。因北方多木,而南方多竹,我们祖先便就地取材,故竹木是我国最原始的箸之原料。 汉代许慎的《说文解字》说:箸「从竹者声」,古人云: 「箸为挟提」而挟从木,这又一次旁证先民最早以细树杆或竹为挟食工具。不过用树枝、细竹从陶锅中挟取烫食到箸之形成,这是一个数百年甚至更远的漫长时间。 人类的历史,是进化的历史,随著饮食烹调方法改进,其饮食器具也随之不断发展。原始社会,大家以手抓食,到了新石器时代,我们的祖先进餐大多采用蒸煮法,主食米豆用水煮成粥,副食菜肉加水烧成多汁的羹,食粥用上匕,从羹中捞取菜肉用餐匙极不方便,而以箸挟取菜叶食之却得心应手,所以《礼记·曲礼》说,「羹之有菜用挟,其无菜者不用挟。」郑玄注「挟,犹箸也。」由此可知,新石器时代羹为副主流,食羹用匙极不方便,以手来抓滚烫稀薄的羹,更是不可能的,于是箸便成了最理想的餐具。 总而言之,箸的出现,并不是孤立的。远在新石器时代中期,在仰韶文化遗址中,已发现了匕匙。当历史推进到新石器时代晚期,人的智慧有了一定的发展,生活条件也有所改善,单以匕匙进食已不能适应烹饪的进化,箸也就顺乎潮流而出现。不过四千年前的夏代,箸还处於雏形,後又经过数百年的不断演化,至商汤时代也就渐渐形成比虎口长一些的两根长短相同的小棍棍。继而发展到商代末期,纣为满足於自己君王奢侈的高贵生活需要,而下令猎象锯牙而制成象箸。 因箸的诞生史无记载,现在只能根据一些专家的种种推论和旁证来追溯占箸的产生,但我们认为箸的如此出现是历史推衍的必然结果。
1,零
在很早的时候,以为“1”是“数字字符表”的开始,并且它进一步引出了2,3,4,5等其他数字。这些数字的作用是,对那些真实存在的物体,如苹果、香蕉、梨等进行计数。直到后来,才学会,当盒子里边已经没有苹果时,如何计数里边的苹果数。
2,数字系统
数字系统是一种处理“多少”的方法。不同的文化在不同的时代采用了各种不同的方法,从基本的“1,2,3,很多”延伸到今天所使用的高度复杂的十进制表示方法。
3,π
π是数学中最著名的数。忘记自然界中的所有其他常数也不会忘记它,π总是出现在名单中的第一个位置。如果数字也有奥斯卡奖,那么π肯定每年都会得奖。
π或者pi,是圆周的周长和它的直径的比值。它的值,即这两个长度之间的比值,不取决于圆周的大小。无论圆周是大是小,π的值都是恒定不变的。π产生于圆周,但是在数学中它却无处不在,甚至涉及那些和圆周毫不相关的地方。
4,代数
代数给了一种崭新的解决间题的方式,一种“回旋”的演年方法。这种“回旋”是“反向思维”的。让我们考虑一下这个问题,当给数字25加上17时,结果将是42。这是正向思维。这些数,需要做的只是把它们加起来。
但是,假如已经知道了答案42,并提出一个不同的问题,即现在想要知道的是什么数和25相加得42。这里便需要用到反向思维。想要知道未知数x的值,它满足等式25+x=42,然后,只需将42减去25便可知道答案。
5,函数
莱昂哈德·欧拉是瑞士数学家和物理学家。欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y = F(x),他是把微积分应用于物理学的先驱者之一。
太阳风暴——最早发现的太阳黑子
有星孛入于北斗——彗星的观测
朔月辛卯 日有食之——日食记录
日月星辰——阴阳合历
世界最古老的星表——石氏星表
现存最早最完整的历法著作——《太初历》
土圭测日影
星陨如雨——流星群的观测
演示天体视运动的仪器——浑天仪
我国最古老的记时仪器——壶漏
大地测量——子午线的测定
历法革命——沈括的《十二气历》
科苑奇葩——郭守敬发明和研制的天文仪器
我国古代最优秀的历法——郭守敬的《授时历》
周公观景——天文台的设置
我国最早的数学专著——《周髀算经》
精推细算——《九章算术》
运筹帷幄——零与筹算
十进制记数法
中国剩余定理——大衍求一术
祖冲之和圆周率
贾宪三角
一元高次方乘——天元术
朱世杰和他的《四元玉鉴》
双假设法——盈不足术
级数与垛积术的应用
中国——算盘的故乡
磁石的魔力——指南针的发明
《墨经》与第一运动定律
被中香炉与常平架
磁偏角和磁倾角
测量工具——游标卡尺
投影 幻灯——走马灯
神秘的倒影
奇异的镜子——透光镜
世界最早的潜望镜
世界最早的人工磁化法——指南鱼
杰出的机械——指南车
火药的发明
火柴的发明
漆和漆器
China——世界著名的瓷器
石油和天然气
会燃烧的石头——煤的开发和利用
张衡的地动仪
最早的测风仪
云向西 雨没犁——云的观测和云图集
温度观测仪和降水观测仪
天气预报
古老的物候历
我国最早的水利工程——都江堰
引泾往洛—一郑国渠
贯通南北的水利工程——京杭大运河
我国最早的水位站——涪陵石鱼
我国最早的潮汐图——窦叔蒙《涛时图》
古代地理学名著——《水经注》
青铜时代——铜矿开采
煮海为盐——盐卤开采
最早的植物志—— 《南方草木状》
草木鱼虫鸟兽——动植物分类
举杯邀明月 把酒问青天——制曲和酿酒
山中有玉者木旁枝工垂——植物探矿
贾思勰和《齐民要术》
特色鲜明的《王祯农书》
精耕细作五谷丰登
茶的种植与茶文化
鲁桑百丰绵绵——桑蚕技术
济世之谷——豆类植物的栽培和豆类食品
徐光启的《农政全书》
善其事 利其器——铁犁的发明
蓄力播种机——三角耧
扬场工具——扇车
水利灌溉机械——龙骨水车
两利俱全十倍禾稼——桑基鱼塘
内园分得温汤水二月中旬已进瓜——栽培技术
地下渠道——坎儿井
望齐侯之色——中医的诊断术和治疗术
张仲景的《伤寒杂病论》
神农尝百草——中草药治病
伏羲制九针——针灸疗法
华陀麻醉术——麻沸散
免疫法——种痘术
养生延年——激素的提取
铁的冶炼技术
百炼成钢——多种多样炼钢技术
黄铜和锌的冶炼
中国银——含镍白铜的冶炼和西传
水法冶金——胆铜法
三大铸造技术
粮食加工工具——水碓和水磨
最早记录里程的车辆——记里鼓车
纵横驰骋——蹄铁术与马蹬的发明
鲁班与锯刨伞的发明
巨龙横卧——万里长城
世界第八奇迹——秦兵马俑
巧夺天工——风格独具的桥梁
百千家似围棋局十二街如种菜畦——隋大兴城
宫殿建筑的瑰宝——故宫
最高最占老的重楼式木塔——山西应县木塔
不沉之舟之奥秘——水密隔舱
运河船闸
大风起兮车如飞——风帆和帆车
飞行者的至宝——降落伞
凌波之至宝——舵
高效率的推进工具——橹
航海史上的壮举——郑和下“西洋”
航空模型之始——风筝
天文与地文航海技术
水平旋翼和螺旋桨
“骑士阶层”的大敌——火药及火药武器
兵学圣典——《孙子兵法》
战车战船
异彩纷呈的冷兵器
人类文明发展的里程碑——造纸术的发明
雕版印刷术
雕版印刷的最高成就——彩色套印
泥活字印刷技术
木活字印刷术和检字盘
世界上最早的纸币——交子
我国最早的建筑学专著——《营造法式》
嫘祖和原始纺织技术
手摇脚踏纺车
织机和提花机
染料和染色
我国最早的诗歌总集——《诗经》
我国最早的编年体史书——《春秋》
我国第一部纪传体通史——《史记》
我国最早文学理论专著——《文心雕龙》
我国第一部纪事本末体史书——《通鉴纪事本末》
我国古代最大的百科全书——《永乐大典》
我国古代书籍装帧形式
中国最古老的文字——甲骨文
青铜器与金文
秦代标准字体——小篆
今文字的开端——隶书
笔势飞动 直抒性灵——草书
点画萦带 体势流美——行书
结构完美的字体——楷书
我国文献语言学的奠基作——《说文解字》
民族文化中的瑰宝——文房四宝
石窟艺术与敦煌壁画
唐代杰出的艺术品——唐三彩
形式整齐 声调和谐——律诗
婉约豪放说宋词
历史悠久的中国古乐器
朱载堉与“十二平均律”
闻名中外的曾侯乙编钟
我国第一部介绍戏曲作家 作品的专著——《录鬼簿》
生旦净丑——中国的传统戏曲
元曲与关汉卿
中国古代保健体操——五禽戏
中国功夫——武术
中国古代足球——蹴球
古老的棋类运动——中国象棋
奥妙无穷的黑白世界——围棋
造纸为我国古代四大发明之一。
水运仪象台建于北宋末年,由吏部尚书苏颂主持建造,是一座大型天文仪器,是具有世界性影响的中国古代的伟大科技成就。
蚊香的发明可能与古人端午节的卫生习俗及烧香祭祀的习俗有关。
黑火药,指南针,印刷术。
人类文明的曙光——火
人类最早的远程武器——弓箭
人类最早的工具——石器
中医中药对世界最伟大的贡献是其防病治病的实践技术。
中国是数学古国,《九章算术》、《数术九章》是古代数学名著。
中国还是天文学古国,中国是世界上最早有文字记载太阳黑子、哈雷彗星、超新星等天象的国家。
在造纸术、指南针、火药、活字印刷术四大发明,中医中药、10进位值制、赤道坐标系、雕版印刷术新四大发明之外,瓷器、丝绸、金属冶铸、深耕细作等影响世界科技发展的中国古代发明还可以列举出许多。
24节气堪称我国古代第五大发明
在物理学、化学、生物学等方面也出现了许多新的进展。我们的祖先创造了中国古代科学技术繁荣发展的两个黄金时代。
我国是传统的农业国家,水利是农业的命脉,古代仅唐以前的大型水利工程就有都江堰、郑国渠、灵渠、龙首渠、京航大运河等。隋朝兴建的京杭 大运河是世界上最早最长的航行运河。这些工程无论在建筑规模、技术水平 还是在农业灌溉、航行、运输的获益等方面都是中世纪欧洲无法比拟的。
春秋战国时期墨家学派的代表人物墨子,在《墨经》一书中提出了点、线、 方、圆等几何概念。《周髀算经》已有勾股定理的运算方法。成书于汉代的 《九章算术》共收有应用题的解答方法246个,内容十分丰富,在算术、代数 等方面取得了很高成就,特别在解决实际问题方面,远远胜过古希腊的数学 体系。祖冲之用“割圆术”求出的圆周率十分精确,在世界上处于遥遥领先 的地位。
尤其需要提及的是我国古代对世界文明发展的突出贡献—“四大发明,它 凝聚着我国古代劳动人民的智慧与创造。
指南针发明于两千多年前的战国时代。当时的人们把天然磁石磨成勺形, 放在光滑的平面上,使之指出南北方向,这种指南仪被称为“司南”。北宋时 已用人工磁化方法制造指南仪。曾公亮1044年编辑的《武经总略》一书记载 了“指南鱼”的制造方法。大科学家沈括在《梦溪笔谈》中也进一步说明了 用铁针磁化制作指南针的方法。指南针发明不久,被用于航海,它指引着中 国远洋船队航行于南太平洋和印度洋航线上,并在十二世纪传入阿拉伯,以 后传入欧洲。
造纸术的发明是中国劳动人民从漂絮和沤麻的经验中总结出来的,始于西 汉。新疆罗布卓尔汉烽燧遗址出土的西汉古纸,都是植物纤维纸,质地还比 较粗糙,东汉主管御用手工作坊的蔡伦,他凭借充足的人力物力,在总结工 匠经验的基础上,以破布、树皮、旧麻为原料,改进造纸工艺,制造出一批 质量比较高的实用纸。造纸技术首先传到朝鲜和越南,七世纪传到日本,八 世纪传到阿拉伯,十三世纪传到欧洲。
印刷术的发明,大体经历了从雕版印刷到活字印刷两大阶段。大约在隋代, 人们在印章石刻的拓印方法启示下,发明了雕版印刷技术。北宋时期(约在 公元1041-1049年),平民发明家毕升,发明了活字印刷技术,它用胶泥制成 活字,然后排版印刷,既经济又方便,大大提高了效率,是印刷史上的一次 大的革命。元代王祯又研制成功了木活字,还发明了转轮排字架。
火药的发明始于炼丹术。炼丹士在炼丹过程中,偶然发现点燃硝、硫、木 炭为主要原料的混合物,会引起燃烧和爆炸。火药发明后,被用于军事,结 果改变了战争的面貌,也改变了历史的进程。正如马克思所说:“火药把骑士 阶层炸得粉碎”。在北宋的抗金战争中,宋军使用了“霹雳炮”、震天响等杀 伤力很大的火药武器。宋代后期,又发明了火药砂枪、火药炮。火药大约于 1225至1248年,由商人传入印度和阿拉伯,以后传人西方。
中国的科学技术在一个相当长的历史时期内居于世界的领先地位。我们对 我国祖先科学创造、发明的揭示与探源的目的,是为了更好地启迪广大青少 年勤奋好学、开拓进取之心。
历史发展到今天,已进入声光电的影像时代,知识信息的传播,形象、直 观。本书选用“图话”的形式,以“图”展现历史风貌和各种形象,以“话” 叙说史实,图文互补,有景有情地向读者展示了祖国几千年文明发展的累累 硕果。
本书虽名为《中国古代发明图话》,但是其中的一些条目并不是严格意义
的发明,如一些天文现象,是我们祖先最先观测到的,是属于发现方面的内 容,但由于对社会生产实践和人民日常生活起过重要作用,意义重大,又有 开创性,我们也放在本书中一并讲述。
再如,有些学术著作,对某一领域里的发明创造作了真实、完整的记录和 描述。历史上的科研成果,主要是靠著作才得以总结、流传下来,如《周髀 算经》、《王祯农书》等。我们也收到本书中。对同一学科,内容相近的学术 著作,我们只选择撰写年代比较早的,加以介绍、讲述。
本书没有采用编年史的框架,基本上按天文、历法、物理、化学化工、地 学、生物学、农学、医药学、轻工、冶金机械、建筑、航行航空、军事、文 化艺术的顺序编排,但又未作严格的分类有些条目在内容上有交差,如:四 大发明之一的火药,在火药的发明中作了介绍,在火药武器中又有涉及;再如种桑养蚕,在桑基鱼塘中讲述,在纺织的有关条目中又进一步阐述。我们 这样做的目的,不仅是照顾叙述上的方便,而且也是为了使读者更加全面、
准确地掌握有关知识。并且在条目内容有交差的同时又有侧重。
我国的传统文化深厚、绚丽,有许多文献典籍流传下来。以往的同类出版 物只介绍科技领域里的发明发现,其实,在社会科学领域中我们祖先同样有 独特的发明创造,如:汉字、诗词歌赋、音律和古代乐器等等。它们都是人 类文明发展的重要组成部分,对推动社会发展同样起着不可低估的历史作用。
为此,我们增加了一些社会科学方面的有关条目,这是本书的独到之处。
在的选用方面,除了展示器物以外,我们还注意表现古代科学家在著 述、发明时的情态和当时的社会生活场景,向读者展示百折不挠的科学巨匠 在发明创造过程中,一个个奇特有趣的感人故事,以增强历史感和艺术感染力,使读者进一步体会到发明者的艰辛。
程大位(公元1533年~1606年)是中国古代数学家,字汝思,号宾渠,安徽省休宁县(今黄山市)人。其故居至今尚存。
程大位出身小商,自幼聪明好学,尤其喜爱数学,常不惜重金购求算书。20岁左右时,他利用外出经商的机会,邀游吴楚,遍访名师,遇有”睿通数学者,辄造请问难,孜孜不倦”。他身居小县城,对土地测量十分重视,曾创造“丈量步车”,并绘图传世。程大位40岁以后,倦于外游,便“归而覃思于率水之上余二十年”。他认真钻研古籍,绎其文义,审其成法,遍取各家之长,加上自己的心得体会,终于在万历二十年(1592)写成《算法统宗》(原名《直指算法统宗》)17卷。其后6年(1598),又对该书删其繁抚,揭其要领,写成《算法纂要》4卷,先后在休宁刊行。
《算法统宗》中,第一、二卷是全书所用的基本知识;第3到12卷为各种应用题解法汇编,各卷基本上以《九章算术》的章名为标题;第13卷到16卷为“难题”,其实算法都很简单,只是条件用诗歌表达;比较隐晦;第17卷为“杂法”。书中各类问题都用珠算,程大位所使用的一套简明顺口的珠算加减乘除口诀及开方方法,一直沿用至今。该书系统总结了我国的珠算法,成为一部比较完备的珠算书。它的成书及广泛流传,标志着我国数学史上由筹算向珠算转化的完成,程大位本人也因此被誉为“珠算一代宗师”。
明末思想家徐光启曾指出,明代数学落后的原因有两个,一个是“名理之儒土苴天下之实事”,另一个是“妖妄之术谬言数有神理。”程大位作为数学家,却与哪些“名理之儒”的观点不同,他十分重视实事,重视数学的应用。他的《算法统宗》之,所以能“风行宇内”,使“海内握算持筹之士,莫不家藏一编”,是与它的实用性分不开的。
重视数学应用
程大位认为数学有广泛的用处,他说:“远而天地之高广,近而山川之浩衍;大而朝廷军国之需,小而民生日用之费,皆莫能外。”吴继绥在《算法统宗》序中也引用过他说的话:“多算胜少算不胜而况于无算乎?”在程大位看来,数学是社会也是人生不可缺少的。他在《算法统宗》中开宗明义,以诗歌形式写道:“世间六艺任纷坛,算乃人之根本;知书不知算法,如临暗室昏昏。”这与当时的理学家们反对经世致用的学问和轻视数学的态度形成了鲜明对照。当时盛行的八股取士制,是“以四书五经命题,八股文章取士”的,它引导知识分子远离自然科学,严重束缚了知识分子的思想。许多读书人为了功名,埋头于儒家经典,只会奢谈三纲五常之类的封建伦理,哪里还顾得上数学和其他有实用价值的科学技术呢?程大位却能突破儒家思想的束缚,中年以后全力写作《算法统宗》。以解决当时社会急需的实际问题,这种精神是十分可贵的。
不仅如此,程大位还敢于针对时弊,秉笔直书、从数学的角度揭露了贪官污吏对人民的愚弄。卷三的“亩法论”便表现了这种思想,文中说:“万历九年遵诏清丈,敝邑(休宁)总书擅变亩法,田分四等,上则一百九十步,中则二百二十步,下则二百六十步,下下则三百步。……与前贤二百四十步一亩大相缪皮,借日土田有肥硗,征役有轻重,亦宜就土田高下。别米麦之多寡、不得轻变亩法。第总书开其弊窦,举邑业已遵行,何容置喙!姑记之此,以见作聪明乱旧章之自云。”显然,这种以“土地肥挠”和“征役轻重”来确定田亩单位的作法是十分荒唐的。其目的无非是浑水摸鱼,敲诈百姓。这段话的字里行间,流露出一位正直数学家对人民的深切同情。
综观《算法统宗》全书,作者是十分重视数学应用的。595道题中,绝大部分是密切结合人民生活的应用问题。开方、勾股等方面有些纯数学问题,也是为应用题作准备的。在应用问题中,包括田亩测量、交通运输、物资分配、容积计算、税收贸易、工程技术等。题目分类基本上沿袭《九章算术》,但在体例上与《九章算术》有一点明显的不同,就是首先列举了学习全书所需的基本知识,包括算法提纲、大数、小数、度量衡、田亩测量制、珠算定位法、珠算四则运算口诀等。这就使该书不仅内容丰富,而且便于自学,成为一本良好的数学入门书。
改进珠算法
《算法统宗》的另一特点是大部分题采用珠算,这也体现厂作者着眼于应用的精神。珠算盘是一种构造简单、价格低廉、容易携带的计算工具。珠算与筹算相比,运算更为方便、迅速。但当时的珠算方法还不够完善,有的口诀也不够顺畅,于是程大位便花大力气改进珠算法及珠算口诀。他为了区别乘除法口诀,在卷一明确规定:“九九合数”应“呼小数在上,大数在下”,“九归歌”应“呼大数在上,小数在下”。例如“六八四十八”是乘法口诀,“八六七十四”是除法口诀。书中记载着完整的撞归口诀,如“一归:见一无除作九一,起一下还一”;“二归,见二无除作九二,起一下还二”等等。第六、七卷中,程大位还给出珠算开平、立方的方法。虽不能肯定这是他的发明,但该书确是最早记载这种方法的古算书之一。(成书稍早于《算法统宗》而出版稍晚的朱载培《算学新说》中也有珠算开平、立方法。)书中的珠算定位法则应归功于程大位,因为当时流行的珠算书中都未提到。吴敬的《九章算法比类大全》中虽有定位法,但他是用于筹算。首次完整地叙述珠算定位法的是《算法统宗》中的“定位总歌”:
“数家定位法为奇,因乘俱向下位推。
加减只需认本位,归与归除上位施。
法多原实逆上数,法前得零顺下宜。
法少原实降下数,法前得零逆上知。”
程大位十分重视珠算口诀,他认为口诀是学珠算、用珠算的基础,一定要记熟。他反复强调:“一要熟读九歌,二要诵归除歌法”,“学算之人须努力,先将九数时时习。”
补充面积公式
在用珠算法解决的各种实际问题中,特别引人注目的是面积问题。对于广大农村来说,田亩测量是不可缺少的,所以程大位十分重视面积问题。在《算法统宗》卷三“方田”中,他结合田亩测量总结出大量面积公式,并编成歌谣,给出图形。这一卷所绘图形60余种,其中比较基本的有十几种,其他都是由这些图形割补而成的。这十几种图形中,一些是《九章算术》中已有公式的,如方田(正方形)、直田(矩形)、圭田(三角形)、邪田(梯形)、圆田(圆形)、弧田(弓形)等,另一些图形则是《九章算术》中没有的,程大位分别给出公式。
对于计算结果、程大位既要求尽可能准确,又主张根据具体情况适可而止。
程大位不用旧法而创立“截法”、就是为了计算结果的准确。他说:“遇歪斜不等,必有斜步,岂可作正步相乘?若截之,庶无误矣。”对于更加复杂的图形,只用“截法”还不行,程大位便采用“截盈补虚”的方法,他说:“田之形状甚多,具载难尽,学者不必执泥,在于临场机变,必须截盈补虚,卑尖减大,以合规式。但田中央先取出方、直、勾股、圭、梭等形,另积旁余,并而于一,然后用法乘除之,用少广章开方等法还原,始为精密之术焉。”但他对准确性的要求是有限度的,因为他着眼于应用。他指出:“世之习算者,咸以方五斜七、围三径一为准,殊不知方五则斜七有奇,径一则围三有奇”,可见他知道有更准确的比值,但他认为不一定使用,因为:数多则散漫难收”,即精确的数据位数多,计算起采太复杂,这在实际应用中往往是没有必要的。
创造丈量步车
为了适应当时测量田亩的需要,程大位还创造了一种丈量步车,在《算法统宗》中绘有图形并有详细解说;这种测量工具类似于现在的卷尺,由环、十字架、转轴、锁、钻角及缠在十字架内的竹尺(薄竹片制成的尺)构成。这在当时是一种很先进的测量工具。程大位对自己的发明十分得意,在图边自题:“宾渠制造心机巧,隶首传来数学精。”
寓算题于诗词
除了《算法统宗》的内容以外,我们从它的文字形式上也可以看出作者重视数学的应用与普及的思想。全书文字分为叙述性文字、诗词歌诀及图表中的文字三种形式,而诗词贯穿全书,占了相当大的比例。这些诗词,既是优美的文学作品,又是直接为数学服务的。例如“留头乘”的歌诀是一首七绝:“下乘之法此为真,起于先将第二因,三四五来乘遍了,却将本位破其身。”衰分章的一首《西江月》用来命题:“群羊一百四十,剪毛不惮勤劳,群中有母有羊羔,先剪二毛比较。大羊剪毛斤二,一十二两羔毛,百五十斤是根苗,子母各该多少?”这些诗词浅明易懂,生动有趣,使读者在学习珠算的过程中同时得到美的享受。再如盈肋章用来命题的一首五律:“今携一壶酒,游春郊外走。逢朋添一倍,入店饮斗九。相逢三处店,饮尽壶中酒。试问能算士,如何知原有?”此诗不仅朗朗上口,而且具有浓厚的生活气息。读罢全诗,仿佛在眼前展现出一幅情趣盎然的携酒春游图。这种大众化的生动诗歌,无疑会引起读者的兴趣。《算法统宗》寓算题于诗词,赋予数学书以文学色彩,其普及数学的效果是显而易见的。人们在愉快地欣赏这些诗词的同时,也就开始了对数学的理解。《算法统宗》成为明清两代流传最广泛的算书,甚至能超越国度,受到日本、朝鲜和东南亚各国人民的欢迎,其引人入胜的文字无疑是原因之一。
名称的来源
数学shù xué(希腊语:μαθηματικ)源自于古希腊语的μθημα(máthēma),其有学习、学问、科学,以及另外还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义和与学习有关的,亦会被用来指数学的。其在英语的复数形式,及在法语中的复数形式+es成 mathématiques,可溯至拉丁文的中性复数mathematica,由西塞hjt数学(math)。以前我国古代把数学叫算术,又称算学,最后才改为数学。
它的意义
数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。
数学史
基础数学的知识与运用是个人与团体生活中不可或缺的一部分。其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见。从那时开始,其发展便持续不断地有小幅度的进展,直至16世纪的文艺复兴时期,因着和新科学发现相作用而生成的数学革新导致了知识的加速,直至今日。
今日,数学被使用在世界不同的领域上,包括科学、工程、医学和经济学等。数学对这些领域的应用通常被称为应用数学,有时亦会激起新的数学发现,并导致全新学科的发展。数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标。虽然许多以纯数学开始的研究,但之后会发现许多应用。
创立于二十世纪三十年代的法国的布尔巴基学派认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。布学派认为,有三种基本的抽象结构:代数结构(群,环,域……),序结构(偏序,全序……),拓扑结构(邻域,极限,连通性,维数……)。
数学研究的各领域
数学主要的学科首要产生于商业上计算的需要、了解数与数之间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的领域相关连著。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习。
数量
数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。整数更深的性质被研究于数论中,此一理论包括了如费马最后定理之著名的结果。
当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以实数来表示的。实数则可以被进一步广义化成复数。数的进一步广义化可以持续至包含四元数及八元数。自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较。
结构
许多如数及函数的集合等数学物件都有着内含的结构。这些物件的结构性质被探讨于群、环、体及其他本身即为此物件的抽象系统中。此为抽象代数的领域。在此有一个很重要的概念,即向量,且广义化至向量空间,并研究于线性代数中。向量的研究结合了数学的三个基本领域:数量、结构及空间。向量分析则将其扩展至第四个基本的领域内,即变化。
空间
空间的研究源自于几何-尤其是欧式几何。三角学则结合了空间及数,且包含有非常著名的勾股定理。现今对空间的研究更推广到了更高维的几何、非欧几何(其在广义相对论中扮演着核心的角色)及拓扑学。数和空间在解析几何、微分几何和代数几何中都有着很重要的角色。在微分几何中有着纤维丛及流形上的计算等概念。在代数几何中有着如多项式方程的解集等几何物件的描述,结合了数和空间的概念;亦有着拓扑群的研究,结合了结构与空间。李群被用来研究空间、结构及变化。
基础与哲学
为了搞清楚数学基础,数学逻辑和集合论等领域被发展了出来。德国数学家康托(Georg Cantor,1845-1918)首创集合论,大胆地向“无穷大”进军,为的是给数学各分支提供一个坚实的基础,而它本身的内容也是相当丰富的,提出了实无穷的存在,为以后的数学发展作出了不可估量的贡献。Cantor的工作给数学发展带来了一场革命。由于他的理论超越直观,所以曾受到当时一些大数学家的反对,Pioncare也把集合论比作有趣的“病理情形”,Kronecker还击Cantor是“神经质”,“走进了超越数的地狱”。对于这些非难和指责,Cantor仍充满信心,他说:“我的理论犹如磐石一般坚固,任何反对它的人都将搬起石头砸自己的脚”
集合论在20世纪初已逐渐渗透到了各个数学分支,成为了分析理论,测度论,拓扑学及数理科学中必不可少的工具。20世纪初世界上最伟大的数学家Hilbert在德国传播了Cantor的思想,把他称为“数学家的乐园”和“数学思想最惊人的产物”。英国哲学家Russell把Cantor的工作誉为“这个时代所能夸耀的最巨大的工作”。
数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关联性。
数学的分类
主要有:1.离散数学2.模糊数学
数学的五大分支
1.经典数学 2.近代数学 3.计算机数学 4.随机数学 5.经济数学
数学分支
1.算术 2.初等代数 3.高等代数 4.数论 5.欧几里得几何 6.非欧几里得几何 7.解析几何 8.微分几何 9.代数几何 10.射影几何学 11.几何拓扑学 12.拓扑学 13.分形几何 14.微积分学 15.实变函数论 16.概率和统计学 17.复变函数论 18.泛函分析 19.偏微分方程 20.常微分方程 21.数理逻辑 22.模糊数学 23.运筹学 24.计算数学 25.突变理论 26.数学物理学 27.函数类 28.会计总会类
数学分类
符号、语言与严谨
在现代的符号中,简单的表示式可能描绘出复杂的概念。此一图像即是由一简单方程所产生的。
我们现今所使用的大部分数学符号都是到了16世纪后才被发明出来的。在此之前,数学被文字书写出来,这是个会限制住数学发展的刻苦程序。现今的符号使得数学对于专家而言更容易去控作,但初学者却常对此感到怯步。它被极度的压缩:少量的符号包含著大量的讯息。如同音乐符号一般,现今的数学符号有明确的语法和难以以其他方法书写的讯息编码。 数学语言亦对初学者而言感到困难。如何使这些字有着比日常用语更精确的意思。亦困恼着初学者,如开放和域等字在数学里有着特别的意思。数学术语亦包括如同胚及可积性等专有名词。但使用这些特别符号和专有术语是有其原因的:数学需要比日常用语更多的精确性。数学家将此对语言及逻辑精确性的要求称为“严谨”。
严谨是数学证明中很重要且基本的一部分。数学家希望他们的定理以系统化的推理依着公理被推论下去。这是为了避免错误的“定理”,依着不可靠的直观,而这情形在历史上曾出现过许多的例子。在数学中被期许的严谨程度因着时间而不同:希腊人期许着仔细的论点,但在牛顿的时代,所使用的方法则较不严谨。牛顿为了解决问题所做的定义到了十九世纪才重新以小心的分析及正式的证明来处理。今日,数学家们则持续地在争论电脑辅助证明的严谨度。当大量的计量难以被验证时,其证明亦很难说是有效地严谨。
发展史
世界数学发展史
数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语Μαθηματικ mathematikós)意思是“学问的基础”,源于ματθημα(máthema)(“科学,知识,学问”)。
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。 除了认知到如何去数实际物质的数量,史前的人类亦了解如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。 更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。
从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关多计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。
到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。
数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail B Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部分为新的数学定理及其证明。”
中国古代数学发展史
数学古称算学,是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。
中国古代数学的萌芽
原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。
西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形的图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。
商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。 公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的数已经开始成为专门的课程。
春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。
战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出“矩不方,规不可以为圆”,把“大一”(无穷大)定义为“至大无外”,“小一”(无穷小)定义为“至小无内”。还提出了“一尺之棰,日取其半,万世不竭”等命题。
而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。墨家给出一些数学定义。例如圆、方、平、直、次(相切)、端(点)等等。 墨家不同意“一尺之棰”的命题,提出一个“非半”的命题来进行反驳:将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的“非半”,这个“非半”就是点。
名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果。名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。
中国古代数学体系的形成
秦汉是封建社会的上升时期,经济和文化均得到迅速发展。中国古代数学体系正是形成于这个时期,它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学著作的出现。
《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。例如分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、盈不足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的。其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。
《九章算术》有几个显著的特点:采用按类分章的数学问题集的形式;算式都是从筹算记数法发展起来的;以算术、代数为主,很少涉及图形性质;重视应用,缺乏理论阐述等。
这些特点是同当时社会条件与学术思想密切相关的。秦汉时期,一切科学技术都要为当时确立和巩固封建制度,以及发展社会生产服务,强调数学的应用性。最后成书于东汉初年的《九章算术》,排除了战国时期在百家争鸣中出现的名家和墨家重视名词定义与逻辑的讨论,偏重于与当时生产、生活密切相结合的数学问题及其解法,这与当时社会的发展情况是完全一致的。 《九章算术》在隋唐时期曾传到朝鲜、日本,并成为这些国家当时的数学教科书。它的一些成就如十进位值制、今有术、盈不足术等还传到印度和阿拉伯,并通过印度以及阿拉伯传到欧洲,促进了世界数学的全新发展喔。
中国古代数学的发展
魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析义理,这些都有利于数学从理论上加以提高。吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。
赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。他在《周髀算经》书中补充的“勾股圆方图及注”和“日高图及注”是十分重要的数学文献。在“勾股圆方图及注”中他提出用弦图证明勾股定理和解勾股形的五个公式;在“日高图及注”中,他用图形面积证明汉代普遍应用的重差公式,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。 刘徽约与赵爽同时,他继承和发展了战国时期名家和墨家的思想,主张对一些数学名词特别是重要的数学概念给以严格的定义,认为对数学知识必须进行“析理”,才能使数学著作简明严密,利于读者。他的《九章算术》注不仅是对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在论述的过程中有很大的发展。刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率为 157/50和 3927/1250。
刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。
东晋以后,中国长期处于战争和南北分裂的状态。祖冲之父子的工作就是经济文化南移以后,南方数学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传统数学大大向前推进了一步。他们的数学工作主要有:计算出圆周率在31415926~31415927之间;提出祖暅原理;提出二次与三次方程的解法等。
据推测,祖冲之在刘徽割圆术的基础上,算出圆内接正6144边形和正12288边形的面积,从而得到了这个结果。他又用新的方法得到圆周率两个分数值,即约率22/7和密率355/113。祖冲之这一工作,使中国在圆周率计算方面,比西方领先约一千年之久;
祖冲之之子祖暅总结了刘徽的有关工作,提出“幂势既同则积不容异”,即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖暅公理。祖暅应用这个公理,解决了刘徽尚未解决的球体积公式。
隋炀帝好大喜功,大兴土木,客观上促进了数学的发展。唐初王孝通的《缉古算经》,主要讨论土木工程中计算土方、工程分工、验收以及仓库和地窖的计算问题,反映了这个时期数学的情况。王孝通在不用数学符号的情况下,立出数字三次方程,不仅解决了当时社会的需要,也为后来天元术的建立打下基础。此外,对传统的勾股形解法,王孝通也是用数字三次方程解决的。 唐初封建统治者继承隋制,656年在国子监设立算学馆,设有算学博士和助教,学生30人。由太史令李淳风等编纂注释《算经十书》,作为算学馆学生用的课本,明算科考试亦以这些算书为准。李淳风等编纂的《算经十书》,对保存数学经典著作、为数学研究提供文献资料方面是很有意义的。他们给《周髀算经》、《九章算术》以及《海岛算经》所作的注解,对读者是有帮助的。隋唐时期,由于历法的需要,天算学家创立了二次函数的内插法,丰富了中国古代数学的内容。
算筹是中国古代的主要计算工具之一,它具有简单、形象、具体等优点,但也存在布筹占用面积大,运筹速度加快时容易摆弄不正而造成错误等缺点,因此很早就开始进行改革。其中太乙算、两仪算、三才算和珠算都是用珠的槽算盘,在技术上是重要的改革。尤其是“珠算”,它继承了筹算五升十进与位值制的优点,又克服了筹算纵横记数与置筹不便的缺点,优越性十分明显。但由于当时乘除算法仍然不能在一个横列中进行。算珠还没有穿档,携带不方便,因此仍没有普遍应用。
唐中期以后,商业繁荣,数字计算增多,迫切要求改革计算方法,从《新唐书》等文献留下来的算书书目,可以看出这次算法改革主要是简化乘、除算法,唐代的算法改革使乘除法可以在一个横列中进行运算,它既适用于筹算,也适用于珠算。
中西方数学的融合
中国从明代开始进入了封建社会的晚期,封建统治者实行极权统治,宣传唯心主义哲学,施行八股考试制度。在这种情况下,除珠算外,数学发展逐渐衰落。
16世纪末以后,西方初等数学陆续传入中国,使中国数学研究出现一个中西融合贯通的局面;鸦片战争以后,近代数学开始传入中国,中国数学便转入一个以学习西方数学为主的时期;到19世纪末20世纪初,近代数学研究才真正开始。
从明初到明中叶,商品经济有所发展,和这种商业发展相适应的是珠算的普及。明初《魁本对相四言杂字》和《鲁班木经》的出现,说明珠算已十分流行。前者是儿童看图识字的课本,后者把算盘作为家庭必需用品列入一般的木器家具手册中。
随着珠算的普及,珠算算法和口诀也逐渐趋于完善。例如王文素和程大位增加并改善撞归、起一口诀;徐心鲁和程大位增添加、减口诀并在除法中广泛应用归除,从而实现了珠算四则运算的全部口诀化;朱载墒和程大位把筹算开平方和开立方的方法应用到珠算,程大位用珠算解数字二次、三次方程等等。程大位的著作在国内外流传很广,影响很大。
1582年,意大利传教士利玛窦到中国,1607年以后,他先后与徐光启翻译了《几何原本》前六卷、《测量法义》一卷,与李之藻编译《圜容较义》和《同文算指》。1629年,徐光启被礼部任命督修历法,在他主持下,编译《崇祯历书》137卷。《崇祯历书》主要是介绍欧洲天文学家第谷的地心学说。作为这一学说的数学基础,希腊的几何学,欧洲玉山若干的三角学,以及纳皮尔算筹、伽利略比例规等计算工具也同时介绍进来。
在传入的数学中,影响最大的是《几何原本》。《几何原本》是中国第一部数学翻译著作,绝大部分数学名词都是首创,其中许多至今仍在沿用。徐光启认为对它“不必疑”、“不必改”,“举世无一人不当学”。《几何原本》是明清两代数学家必读的数学书,对他们的研究工作颇有影响。
其次应用最广的是三角学,介绍西方三角学的著作有《大测》《割圆八线表》和《测量全义》。《大测》主要说明三角八线(正弦、余弦、正切、余切、正割、余割、正矢、余矢)的性质,造表方法和用表方法。《测量全义》除增加一些《大测》所缺的平面三角外,比较重要的是积化和差公式和球面三角。所有这些,在当时历法工作中都是随译随用的。
1646年,波兰传教士穆尼阁来华,跟随他学习西方科学的有薛凤柞、方中通等。穆尼阁去世后,薛凤柞据其所学,编成《历学会通》,想把中法西法融会贯通起来。《历学会通》中的数学内容主要有比例对数表》《比例四线新表》和《三角算法》。前两书是介绍英国数学家纳皮尔和布里格斯发明增修的对数。后一书除《崇祯历书》介绍的球面三角外,尚有半角公式、半弧公式、德氏比例式、纳氏比例式等。方中通所著《数度衍》对对数理论进行解释。对数的传入是十分重要,它在历法计算中立即就得到应用。
清初学者研究中西数学有心得而著书传世的很多,影响较大的有王锡阐《图解》、梅文鼎《梅氏丛书辑要》(其中数学著作13种共40卷)、年希尧《视学》等。梅文鼎是集中西数学之大成者。他对传统数学中的线性方程组解法、勾股形解法和高次幂求正根方法等方面进行整理和研究,使濒于枯萎的明代数学出现了生机。年希尧的《视学》是中国第一部介绍西方透视学的著作。
清康熙皇帝十分重视西方科学,他除了亲自学习天文数学外,还培养了一些人才和翻译了一些著作。1712年康熙皇帝命梅彀成任蒙养斋汇编官,会同陈厚耀、何国宗、明安图、杨道声等编纂天文算法书。1721年完成《律历渊源》100卷,以康熙“御定”的名义于1723年出版。其中《数理精蕴》主要由梅彀成负责,分上下两编,上编包括《几何原本》、《算法原本》,均译自法文著作;下编包括算术、代数、平面几何平面三角、立体几何等初等数学,附有素数表、对数表和三角函数表。由于它是一部比较全面的初等数学百科全书,并有康熙“御定”的名义,因此对当时数学研究有一定影响。
雍正即位以后,对外闭关自守,导致西方科学停止输入中国,对内实行高压政策,致使一般学者既不能接触西方数学,又不敢过问经世致用之学,因而埋头于究治古籍。乾嘉年间逐渐形成一个以考据学为主的乾嘉学派。 随着《算经十书》与宋元数学著作的收集与注释,出现了一个研究传统数学的高潮。其中能突破旧有框框并有发明创造的有焦循、汪莱、李锐、李善兰等。他们的工作,和宋元时代的代数学比较是青出于蓝而胜于蓝的;和西方代数学比较,在时间上晚了一些,但这些成果是在没有受到西方近代数学的影响下独立得到的。
与传统数学研究出现高潮的同时,阮元与李锐等编写了一部天文数学家传记—《畴人传》,收集了从黄帝时期到嘉庆四年已故的天文学家和数学家270余人(其中有数学著作传世的不足50人),和明末以来介绍西方天文数学的传教士41人。这部著作全由“掇拾史书,荃萃群籍,甄而录之”而成,收集的完全是第一手的原始资料,在学术界数学家华罗庚颇有影响。
1840年鸦片战争以后,西方近代数学开始传入中国。首先是英人在上海设立墨海书馆,介绍西方数学。第二次鸦片战争后,曾国藩、李鸿章等官僚集团开展“洋务运动”,也主张介绍和学习西方数学,组织翻译了一批近代数学著作。
其中较重要的有李善兰与伟烈亚力翻译的《代数学》《代微积拾级》;华蘅芳与英人傅兰雅合译的《代数术》《微积溯源》《决疑数学》;邹立文与狄考文编译的《形学备旨》《代数备旨》《笔算数学》;谢洪赉与潘慎文合译的《代形合参》《八线备旨》等等。
《代微积拾级》是中国第一部微积分学译本;《代数学》是英国数学家德·摩根所著的符号代数学译本;《决疑数学》是第一部概率论译本。在这些译著中,创造了许多数学名词和术语,至今还在应用,但所用数学符号一般已被淘汰了。戊戌变法以后,各地兴办新法学校,上述一些著作便成为主要教科书。 在翻译西方数学著作的同时,中国学者也进行一些研究,写出一些著作,较重要的有李善兰的《尖锥变法解》《考数根法》;夏弯翔的《洞方术图解》《致曲术》《致曲图解》等等,都是会通中西学术思想的研究成果。
由于输入的近代数学需要一个消化吸收的过程,加上清末统治者十分腐败,在太平天国运动的冲击下,在帝国主义列强的掠夺下,焦头烂额,无暇顾及数学研究。直到1919年五四运动以后,中国近代数学的研究才真正开始。
源自,强烈建议你去看下完整版的(如果你想的话)
成就:
1、第一颗原子弹爆炸成功。
1964年10月16日,中国第一颗原子弹在新疆罗布泊爆炸成功,成为继美国、苏联、英国、法国之后,世界上第五个拥有核武器的国家。
同日发表的《中华人民共和国政府声明》称,中国政府一贯主张全面禁止和彻底销毁核武器;中国发展核武器是为了防御,为了打破核大国的核垄断。中国政府郑重宣布,中国在任何时候、任何情况下,都不会首先使用核武器。
2、两弹一星
两弹一星最初指原子弹、氢弹、人造卫星。“两弹”中的原子弹和氢弹后来合称核弹,另一弹指早期研发的导弹。后来“两弹一星”指导弹、核弹、人造卫星。
1960年11月5日,中国仿制的第一枚导弹发射成功,1964年10月16日15时中国第一颗原子弹爆炸成功,使中国成为第五个有原子弹的国家。
3、中国第一台计算机
1958年8月1日,中国第一台计算机——由张梓昌领衔研制的103型通用数字电子计算机研制成功,运行速度每秒1,500次,内存储量为1024字节。
伟人事迹:
1、袁隆平研究出杂交水稻
袁隆平于1971年2月调到湖南省农业科学院专门从事杂交水稻研究工作。1973年,以他为首的科技攻关组完成了三系配套并成功培育杂交水稻,实现了杂交水稻的历史性突破。
1984年6月成立了全国性的杂交水稻专门研究机构-湖南杂交水稻研究中心,后又成立国家杂交水稻工程技术研究中心,均由袁隆平任中心主任 。1986年提出“两系法亚种间杂种优势利用”的发展观点。
经6年艰难攻关,与研究人员成功地突破了两系杂交稻关键技术并推广应用,取得了良好的增产效果。1997年提出“杂交水稻超高产育种”的技术路线,在国际上引起高度重视。
在他的率领下,先后于2000年、2004年和2011年实现了超级稻亩产700公斤、800公斤和900公斤的第一期、第二期、第三期目标,亩产1000公斤的第四期目标也于2014年10月实现历史性突破,为进一步大面积、大幅度提高水稻产量奠定了基础。
1995年他当选为中国工程院院士。 被称为杂交水稻之父。
2、鲁迅弃医从文
鲁迅开辟了白话文的先河,是新文化运动是主将,他的杂文,被誉为插向敌人胸口的一把匕首!鲁迅“俯首甘为孺子牛”的精神影响了几代人,他是旧中国少有的具有民族气节和骨气的作家。
鲁迅一生在文学创作、文学批评、思想研究、文学史研究、翻译、美术理论引进、基础科学介绍和古籍校勘与研究等多个领域具有重大贡献。
他对于五四运动以后的中国社会思想文化发展具有重大影响,蜚声世界文坛,尤其在韩国、日本思想文化领域有极其重要的地位和影响,被誉为“二十世纪东亚文化地图上占最大领土的作家”。
3、孙中山成立同盟会
1896年10月,孙中山在英国伦敦被清政府使馆诱捕后经他的老师英国人康德黎营救脱险。1905年 8月中国第一个资产阶级民主革命政党--“中国同盟会”在东京成立,孙中山被一致推举为总理。
在同盟会机关报《民报》的发刊词里,孙中山首次提出了“民族、民权、民生”三大主义,即三民主义的政治纲领。
-两弹一星
-我国第一颗原子弹爆炸成功
-袁隆平
酒的起源
酒的起源,我国古籍记载各不相同,一说源于轩辕黄帝,一 说始于禹时仪狄。从现代科学的观点来看,酒的起源是经历了一个从自然酒过渡到人工造酒的过程。
我们知道,凡是含有糖分的物质,如水果,蜂蜜、兽乳,很 容易受到自门然界中的发酵微生物的作用而产生酒。所以,不少人认为:最原始的酒,应该是由含糖水果自然发酵而成。这在古人 的笔记上屡见不鲜。众所周知的猿酒当是自然酒之一。
第一代人工饮料酒
人类社会发展的进程是先进入游牧社会,然后再进入农业社会 的。人类最早的人工饮料酒的发明,则是游牧时代用兽乳酿造的乳酒。因为兽乳中含有乳糖,能自然发酵生成乙醇(酒精)。这种 乳酒,古称醴酪(《周礼、礼运篇》)。也就是说,第一代人工饮料酒,不添加任何糖化发酵剂,全靠自然形成。今日的内蒙,西 藏、青海等地的少壮民族,仍保留了这种兽乳制酒的习惯。这大约是距今7000到1万年以前的事。
第二代人工饮料酒(发酵酒)
我国回第二代人工饮料酒是加了糖化发酵剂来酿成的,又称人 工发酵酒(针对非蒸馏酒而言),亦简称发酵酒。所加的糖化发酵剂,就是大家热悉的曲蘖。这是我国的一大特点,它又分为天然 曲蘖酿酒和人工曲蘖酿酒两个阶段。
(1)天然曲蘖酿酒(第一阶段)
用天然曲蘖酿酒是第二代人工饮料酒的第一阶段。出现在农 业产生前后。我们祖先因认识到野生植物的淀粉种子可以充饥,便搜集贮藏以备冬用。诚然,农业社会出现以后,贮藏的谷物就更 多。由于当时保存的方法原始、粗放、条件差,谷物在贮藏过程中受潮发芽,长霉的现象比较普遍,吃剩的熟谷物也会发霉,这 些发芽长霉的谷物,形成了天然的曲蘖,遇到水以后,自然会发酵生成酒。
本文2023-08-05 20:33:31发表“古籍资讯”栏目。
本文链接:https://www.yizhai.net/article/24854.html