梅文鼎作为“宣城数学派”的创始人,他是如何达到如此之高的成就?

栏目:古籍资讯发布:2023-08-03浏览:1收藏

梅文鼎作为“宣城数学派”的创始人,他是如何达到如此之高的成就?,第1张

首先他自己就天赋异禀,从小就喜欢算法和历法,被称为神童。而且这也跟他从小受的教育有关,宣城梅氏家族,是公认的国内历史上最长,世系最为清楚,历史名人最多的一个文化世家,家族文化非常浓厚,而梅文鼎从小生活在这样一个世家里面,所受的家庭教育和起始点就和一般人站在不同的高度上。 他从小熟读算术古书,对于算学如痴如醉。在27岁的时候,他师从名儒倪观湖学习天文历法,而关于天文历法的制定就更离不开测算,因此为他的计算能力打下了更好的基础。后来有一次他去参加一个在教堂里面举行的算学交流活动,主持的人是一个外国人,当时那名主持人大言不惭的说,因为是西方的天文,数字,才让中华的科学进步了几百年。当时梅文鼎听到这句话之后就非常生气,因为他知道,中国古时候的算法并不比西方差,甚至领先好多年。就比如说,我们的九章算术。但是梅文鼎却又感到无可奈何,由于朝廷并不重视历算,留下来的一些历史典籍更是丧失了很多,研究的人更是少之有少。所以当西方经过文艺复兴运动之后,科学技术突飞猛进,很多明朝晚期的士大夫就开始学习西学的风气,认为西学算法精进又科学。 于是梅文鼎就与西方的传道士开始争辩讨论,后来有一次讨论到了方程式,西方的传道是嘲笑中国没有方程这个概念,于是梅文鼎为了证明中国古籍里面记载的方程式,于是就要决定写一部关于方程的书,于是他的第1部作品《方程论》也就出来了。 后来,为了让中华算术流传下去,他又相续出了第2部第3部著作,而他的著作也成功让他的家族有了10多位通晓数学的名家,不仅巩固了家族地位,更是将中华算术推向了另一个高度,展现给了世界。

整理了《四库全书》,《四库全书》是在乾隆皇帝的主持下,由纪昀等360多位高官、学者编撰,3800多人抄写,费时十三年编成。丛书分经、史、子、集四部,故名四库。共有3500多种书,79万卷,36万册,约8亿字,基本上囊括了中国古代所有图书,故称"全书"。当年,乾隆皇帝命人手抄了7部《四库全书》,下令分别藏于全国各地。先抄好的四部分贮于紫禁城文渊阁、辽宁沈阳文溯阁、圆明园文源阁、河北承德文津阁珍藏,这就是所谓的"北四阁"。后抄好的三部分贮扬州文汇阁、镇江文宗阁和杭州文澜阁珍藏,这就是所谓的"南三阁"。

《四库全书》的内容是十分丰富的。按照内容分类分经、史、子、集四部分,部下有类,类下有属。全书共4部44类66属。

经部收录儒家“十三经”及相关著作,包括易类、书类、诗类、礼类、春秋类、孝经类、五经总义类、四书类、乐类、小学类等10个大类,其中礼类又分周礼、仪礼、礼记、三礼总义、通礼、杂礼书6属,小学类又分训诂、字书、韵书3属。

史部收录史书,包括正史类、编年类、纪事本末类、杂史类、别史类、诏令奏议类、传记类、史钞类、载记类、时令类、地理类、职官类、政书类、目录类、史评类等15个大类,其中诏令奏议类又分诏令、奏议2属,传记类又分圣贤、名人、总录、杂录、别录5属,地理类又分宫殿疏、总志、都会郡县、河渠、边防、山川、古迹、杂记、游记、外记10属,职官类又分官制、官箴2属,政书类又分通制、典礼、邦计、军政、法令、考工6属,目录类又分经籍、金石2属。

子部收录诸子百家著作和类书,包括儒家类、兵家类、法家类、农家类、医家类、天文算法类、术数类、艺术类、谱录类、杂家类、类书类、小说家类、释家类、道家类等14大类,其中天文算法类又分推步、算书2属,术数类又分数学、占侯、相宅相墓、占卜、命书相书、阴阳五行、杂技术7属,艺术类又分书画、琴谱、篆刻、杂技4属,谱录类又分器物、食谱、草木鸟兽虫鱼3属,杂家类又分杂学、杂考、杂说、杂品、杂纂、杂编6属,小说家类又分杂事、异闻、琐语3属。

集部收录诗文词总集和专集等,包括楚辞、别集、总集、诗文评、词曲等5个大类,其中词曲类又分词集、词选、词话、词谱词韵、南北曲5属。除了章回小说、戏剧著作之外,以上门类基本上包括了社会上流布的各种图书。就著者而言,包括妇女,僧人、道家、宦官、军人、帝王、外国人等在内的各类人物的著作。

  《周髀算经》、《九章算术》、《海岛算经》、《张丘建算经》、《夏侯阳算经》、《五经算术》、《辑古算经》、《缀术》。便是“算经十书”。

  《周髀算经》

  这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪)。《周髀算经》不仅是数学著作,更确切地说,它是讲述当时的一派天文学学说——“盖天说”的天文著作。就其中的数学内容来说,书中记载了用勾股定理来进行的天文计算,还有比较复杂的分数计算。当然不能说这两项算法都是到公元前一世纪才为人们所掌握,它仅仅说明在现在已经知道的资料中,《周髀算经》是比较早的记载。

  《九章算术》

  对古代数学的各个方面全面完整地进行叙述的是《九章算术》,它是十部算书中最重要的一部。它对以后中国古代数学发展所产生的影响,正像古希腊欧几里得(约前330—前275)《几何原本》对西方数学所产生的影响一样,是非常深刻的。在中国,它在一千几百年间被直接用作数学教育的教科书。它还影响到国外,朝鲜和日本也都曾拿它当作教科书。

  《九章算术》,也不知道确实的作者是谁,只知道西汉早期的著名数学家张苍(前201—前152)、耿寿昌等人都曾经对它进行过增订删补。《汉书·艺文志》中没有《九章算术》的书名,但是有许商、杜忠二人所著的《算术》,因此有人推断其中或者也含有许、杜二人的工作。1984年,湖北江陵张家山西汉早期古墓出土《算数书》书简,推算成书当比《九章算术》早一个半世纪以上,内容和《九章算术》极相类似,有些算题和《九章算术》算题文句也基本相同,

  可见两书有某些继承关系。可以说《九章算术》是在长时期里经过多次修改逐渐形成的,虽然其中的某些算法可能早在西汉之前就已经有了。正如书名所反映的,全书共分九章,一共搜集了二百四十六个数学问题,连同每个问题的解法,分为九大类,每类算是一章。

  从数学成就上看,首先应该提到的是:书中记载了当时世界上最先进的分数四则运算和比例算法。书中还记载有解决各种面积和体积问题的算法以及利用勾股定理进行测量的各种问题。《九章算术》中最重要的成就是在代数方面,书中记载了开平方和开立方的方法,并且在这基础上有了求解一般一元二次方程(首项系数不是负)的数值解法。还有整整一章是讲述联立一次方程解法的,这种解法实质上和现在中学里所讲的方法是一致的。这要比欧洲同类算法早出一千五百多年。在同一章中,还在世界数学史上第一次记载了负数概念和正负数的加减法运算法则。

  《九章算术》不仅在中国数学史上占有重要地位,它的影响还远及国外。在欧洲中世纪,《九章算术》中的某些算法,例如分数和比例,就有可能先传入印度再经阿拉伯传入欧洲。再如“盈不足”(也可以算是一种一次内插法),在阿拉伯和欧洲早期的数学著作中,就被称作“中国算法”。现在,作为一部世界科学名著,《九章算术》已经被译成许多种文字出版。

  《孙子算经》

  约成书于四、五世纪,作者生平和编写年代都不清楚。现在传本的《孙子算经》共三卷。卷上叙述算筹记数的纵横相间制度和筹算乘除法则,卷中举例说明筹算分数算法和筹算开平方法。

  《孙子算经》中国是世界上最早采用十进位值制记数的国家,春秋战国之际已普遍应用的筹算,即严格遵循了十进位值制。关于算筹记数法现在仅见的资料载于《孙子算经》。《孙子算经》三卷,成书年代约为公元4世纪,该书上卷是关于筹算法则的系统介绍,下卷则有著名的“物不知数”题,亦称“孙子问题”。 引  卷下第31题,可谓是后世“鸡兔同笼”题的始祖,后来传到日本,变成“鹤龟算”。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?

  具有重大意义的是卷下第26题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?答曰:『二十三』”。《孙子算经》不但提供了答案,而且还给出了解法。南宋大数学家秦九韶则进一步开创了对一次同余式理论的研究工作,推广“物不知数”的问题。德国数学家高斯﹝KF Gauss公元1777-1855年﹞于公元1801年出版的《算术探究》中明确地写出了上述定理。公元1852年,英国基督教士伟烈亚士﹝Alexander Wylie公元1815-1887年﹞将《孙子算经》“物不知数”问题的解法传到欧洲,公元1874年马蒂生﹝LMathiesen﹞指出孙子的解法符合高斯的定理,从而在西方的数学史里将这一个定理称为“中国的剩余定理”﹝Chinese remainder theorem﹞。

  《五曹算经》

  《五曹算经》是一部为地方行政人员所写的应用算术书(作者不可详,有的认为其作者是甄鸾),全书分为田曹、兵曹、集曹、仓曹、金曹等五个项目,所以称为 “ 五曹 ” 算经。所讲问题的解法都浅显易懂,数字计算都尽可能地避免分数。 引全书共收67个问题。它的著者和年代都没有记载。欧阳修《新唐书》卷五十九《艺文志》有:「甄鸾《五曹算经》五卷」其它各书也有类似的记载。甄鸾是公元535-566年前后的人。

  《五曹算经》此系南宋刊本《五曹算经》卷首书影,刻于南宋嘉定五年(一二一二年)。《五曹算经》是我国的一部数学古籍,作者是北周的甄鸾(字叔遵,河北无极人),他通晓天文历法,曾任司隶大夫、汉中郡守等职务。唐李淳风等曾为之作注。

  《夏侯阳算经》

  夏侯阳算经,算经十书之一。原书已失传无考。北宋元丰九年(1084年)所刻《夏侯阳算经》是唐中叶的一部算书。引用当时流传的乘除捷法,解答日常生活中的应用问题,保存了很多数学史料。

  《张丘建算经》

  《张邱建算经》的作者是张邱建,大约作于5世纪后期,里面有对最大公约数、最小公倍数的应用问题,不有竺差级数问题,最著名的是提出了不定方程组 —— 百鸡问题,但是没有具体说明其解灶。《夏侯阳算经》估计是北魏时代的作品。里面概括地叙述了乘除速算法则、分数法则,解释了 ” 法除 ” 、 “ 步除 ” 、 “ 约除 ” 、 “ 开平方 ” 、 “ 方立 ” 等法则,另外推广了十进小数的应用,全与现在的表示法不同,计算结果有奇零时借用分、厘、毫、丝等长度单位名称表示文以下的十进小数。 引  「百鸡问题」是《张邱建算经》中的一个著名数学问题,它给出了由三个未知量的两个方程组成的不定方程组的解。百鸡问题是:「今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。凡百钱买鸡百只,问鸡翁母雏各几何。」依题意即解 

  自张邱建以後,中国数学家对百鸡问题的研究不断深入,百鸡问题也几乎成了不定方程的代名词,从宋代到清代围绕百鸡问题的数学研究取得了很好的成就。

  《海岛算经》

  《海岛算经》是三国时期刘徽(约225—约295)所作。这部书中讲述的都是利用标杆进行两次、三次、最复杂的是四次测量来解决各种测量数学的问题。这些测量数学,正是中国古代非常先进的地图学的数学基础。此外,刘徽对《九章算术》所作的注释工作也是很有名的。一般地说,可以把这些注释看成是《九章算术》中若干算法的数学证明。刘徽注中的“割圆术”开创了中国古代圆周率计算方面的重要方法(参见本书第98页),他还首次把极限概念应用于解决数学问题。 

  《缉古算经》

  王孝通撰《缉古算经》。唐武德八年(625)五月,王孝通撰《缉古算经》在长安成书,这是中国现存最早解三次方程的著作。

  唐代立于学官的十部算经中,王孝通《缉古算经》是唯一的一部由唐代学者撰写的。王孝通主要活动于六世纪末和七世纪初。他出身于平民,少年时期便开始潜心钻研数学,隋朝时以历算入仕,入唐后被留用,唐朝初年做过算学博士(亦称算历博士),后升任通直郎、太史丞。毕生从事数学和天文工作。唐武德六年(623),因行用的傅仁均《戊寅元历》推算日月食与实际天象不合,与吏部郎中祖孝孙受命研究傅仁均历存在的问题,武德九年(626)又与大理卿崔善为奉诏校勘傅仁均历,驳正术错三十余处,并付太史施行。王孝通所著《缉古算术》,被用作国子监算学馆数学教材,奉为数学经典,故后人称为《缉古算经》。全书一卷(新、旧《唐书》称四卷,但由于一卷的题数与王孝通自述相符,因此可能在卷次分法上有所不同)共二十题。第一题为推求月球赤纬度数,属于天文历法方面的计算问题,第二题至十四题是修造观象台、修筑堤坝、开挖沟渠,以及建造仓廪和地窖等土木工程和水利工程的施工计算问题,第十五至二十题是勾股问题。这些问题反映了当时开凿运河、修筑长城和大规模城市建设等土木和水利工程施工计算的实际需要。

  《五经算术》

  北周甄鸾所著,共二卷。书中对《易经》、 《诗经》、《尚书》、 《周礼》、《仪礼》、《礼记》、《论语》、《左传》等儒家经典及其古注中与数字有关的地方详加注释,对研究经学的人或可有一定的帮助,但就数学的内容而论,其价值有限。现传本亦系抄自《永乐大典》。

  《数术记遗》

  徐岳(?——220)的《数术记遗》,《数术记遗》以与刘洪问答的形式,介绍了14种计算方法,“未满百言,而骨削质奥,思纬淹通,依然东京风骨。”也就是在这部书中,徐岳在中国也是在世界历史上第一次记载算盘的样式,并第一次珠算定名,在世界珠算史上写下了光辉的一页。 其中著录了十四种古算法。第一种叫"积算",就是当时通用的筹算。还有太乙算、两仪算、三才算、五行算、八卦算、九宫算、运筹算、了知算、成数算、把头算、龟算、珠算、计数。"《数术记遗》仲介绍的一种心算方法。原文说:’既舍数术,宜从心计。’注中说:’言舍数术者,谓不用算筹,当以意计之。’这说明计算时不用珠、筹、针等工具,只用心算完成。但从注中所举各例来看,此处"计算",与现代对心算的理解,又有不同之处。现在的心算,指在数字运算时,不用计算工具,只用意念完成。而"计数"的范围颇广,在测量及其它方面,不但不用计算工具,而且想出巧妙办法,不通过数字运算,直接可得所要求的数字结果。"

  《缀术》

  《缀术》是南北朝时期著名数学家祖冲之的著作。很可惜,这部书在唐宋之际公元十世纪前后失传了。宋人刊刻《算经十书》的时候就用当时找到的另一部算书《数术记遗》来充数。祖冲之的著名工作——关于圆周率的计算(精确到第七位小数),记载在《隋书·律历志》中。

答:原题为:清代诗人徐子云:

巍巍古寺在山林,不知寺内几多僧。

三百六十四只碗,看看用尽不差争。

三人共食一碗饭,四人共吃一碗羹。

请问先生名算者,算来寺内几多僧。

解:364÷(3分之1+4分之1)

=364÷12分之7

=624(人) 答:寺内僧人624人。

说明:诗的大意是:寺内有364只碗,如果3个和尚共吃一碗饭,4个和尚共吃一碗羹,刚好够用,寺内共有和尚多少个?用诗的形式出数学题,这种题称为诗题。数学诗是诗的一种,而诗题不能归于数学诗,诗题应属于数学问题,是数学题的一种文字表叙。 中国古代有大量的诗题流传至今,以上寺庙碗数问题就是一例。古代诗题虽有其趣味性,但在题意的表达上与当代人有一些隔膜。因此在玩此类游戏时,理解题意显得特别重要。

一、刘徽(古代著名数学家)

刘徽(约225年—约295年),汉族,山东滨州邹平市人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。

刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。

二、朱世杰(元代数学家、教育家)

朱世杰(1249年-1314年),字汉卿,号松庭,汉族,燕山(今北京)人氏,元代数学家、教育家,毕生从事数学教育。有“中世纪世界最伟大的数学家”之誉。朱世杰在当时天元术的基础上发展出“四元术”,也就是列出四元高次多项式方程,以及消元求解的方法。

此外他还创造出“垛积法”,即高阶等差数列的求和方法,与“招差术”,即高次内插法。主要著作是《算学启蒙》与《四元玉鉴》。

三、杨辉(南宋著名数学家)

杨辉(生卒年不详),字谦光,汉族,钱塘(今浙江杭州)人,南宋杰出的数学家、数学教育家。

生平履历不详。曾担任过南宋地方行政官员,为政清廉,足迹遍及苏杭一带。他在总结民间乘除捷算法、“垛积术”、纵横图以及数学教育方面,均做出了重大的贡献。他是世界上第一个排出丰富的纵横图和讨论其构成规律的数学家。

还曾论证过弧矢公式,时人称为“辉术”。与秦九韶、李冶、朱世杰并称“宋元数学四大家”。

著有数学著作5种21卷,即《详解九章算法》12卷(1261),《日用算法》2卷(1262),《乘除通变本末》3卷(1274),《田亩比类乘除捷法》2卷(1275)和《续古摘奇算法》2卷(1275)(其中《详解》和《日用算法》已非完书)。

后三种合称为《杨辉算法》。朝鲜、日本等国均有译本出版,流传世界。

四、李锐 (清代数学家)

李锐,中国清代数学家。字尚之,号四香。江苏元和(今苏州)人。清乾隆三 十三年十二月八日(1769 年 1 月 15 日)生;嘉庆二十二年六月三十日(1817 年 8 月 12 日)卒。数学、天文学。

曾受业于钱大昕门下,后入阮元幕府,整理数学典籍。实际主持《畴人传》的编写工作。著有《弧矢算术细草》、《勾股算术细草》、《方程新术草》,阐发中国古代数学的精粹。还曾对多部历法进行注释和数理上的考证,著成《日法朔余强弱考》。

五、赵爽 (古代数学家)

赵爽,又名婴,字君卿,中国数学家。东汉末至三国时代吴国人。他是我国历史上著名的数学家与天文学家。生平不详,约182---250年。

据载,他研究过张衡的天文学著作《灵宪》和刘洪的《乾象历》,也提到过“算术”。他的主要贡献是约在222年深入研究了《周髀》,该书是我国最古老的天文学著作,唐初改名为《周髀算经》该书写了序言,并作了详细注释。

该书简明扼要地总结出中国古代勾股算术的深奥原理。其中一段530余字的“勾股圆方图”注文是数学史上极有价值的文献。他详细解释了《周髀算经》中勾股定理,将勾股定理表述为:“勾股各自乘,并之,为弦实。开方除之,即弦。”。

又给出了新的证明:“按弦图,又可以勾股相乘为朱实二,倍之为朱实四,以勾股之差自相乘为中黄实,加差实,亦成弦实。”。“又”“亦”二字表示赵爽认为勾股定理还可以用另一种方法证明。

热门文章
    确认删除?
    回到顶部