什么是《九章算术》

栏目:古籍资讯发布:2023-08-07浏览:1收藏

什么是《九章算术》,第1张

《九章算术》是中国古代数学专著,是算经十书中最重要的一种。《九章算术》上承先秦数学发展之源流,入汉之后又经许多学者的整理、删补和修订,大约于东汉初年(公元1世纪)成书,是几代人共同劳动的结晶,它的出现标志着中国古代数学体系的形成。后世的古代数学家,大都是从《九章算术》开始学习和研究数学的,许多人曾为它作过注释,其中最著名的有刘徽(公元263年)、李淳风(公元656年)等人。唐宋两代都由国家明令规定为教科书。1084年由当时的北宋朝廷进行刊刻,是世界上最早的印刷本数学书。《九章算术》在隋唐时期就已传入朝鲜、日本.现在它已被译成日、俄、德、英、法等多种文字。

《九章算术》收有246个数学问题,分为九章。它们的主要内容分别是:第一章“方田”,研究田亩面积计算;第二章“粟米”,研究谷物粮食的按比例折换;第三章“衰分”,研究比例分配问题;第四章“少广”,已知面积、体积、求其一边长和径长等;第五章“商功”,研究土石工程、体积计算;第六章“均输”,研究合理摊派赋税;第七章“盈不足”,即双设法问题;第八章“方程”,研究一次方程组问题;第九章“勾股”,利用勾股定理求解。

《九章算术》的数学成就:

(1)提出分数的通分、约分和加减乘除四则运算的完整法则,比欧洲早1400多年;

(2)提出整套的比例理论。西方直到15世纪末以后才形成类似的全套方法;

(3)介绍了开平方、开立方的方法,其程序与现今程序基本一致。这是世界上最早的多位数和分数开方法则。它奠定了中国在高次方程数值解法方面长期领先世界的基础;

(4)采用分离系数的方法表示线性方程组,相当于现在的矩阵。解线性方程组时使用的直除法,与矩阵的初等变换一致。这是世界上最早的完整的线性方程组的解法。在西方,直到17世纪才提出完整的线性方程的解法法则;

(5)引进和使用了负数,并提出了正负数,正负数的加减法则,与现今代数法则完全相同;解线性方程组时实际还施行了正负数的乘除法。这是世界数学史上一项重大的成就,第一次突破了正数的范围,扩展了数系。外国则到7世纪才认识负数。

(6)提出了勾股数问题的通解公式。在西方直到3世纪才取得相近的结果,比《九章算术》晚了约3个世纪;

(7)提出了各种多边形、圆、弓形等的面积公式。

(1):两鼠穿垣

今有垣厚五尺,两鼠对穿。大鼠日一尺,小鼠亦一尺。大鼠日自倍,小鼠日自半。问:何日相逢?各穿几何?

题意是:有垛厚五尺(旧制长度单位,1尺=10寸)的墙壁,大小两只老鼠同时从墙的两面,沿一直线相对打洞。大鼠第一天打进1尺,以后每天的进度为前一天的2倍;小鼠第一天也打进1尺,以后每天的进度是前一天的一半。它们几天可以相遇?相遇时各打进了多少?

此题刊于我国著名的古典数学名著《九章算术》一书的“盈不足”一章中。《九章算术》成书大约在公元一世纪,由于年代久远,它的作者以及准确的成书年代,至今尚未能考证出来。该书是采用罗列一个个数学问题的形式编排的。全书共收集了246道数学题,分成九大类,即九章,所以称为《九章算术》。

解答本题并不十分繁难,请你试一试。

(2)韩信点兵

传说汉朝大将韩信用一种特殊方法清点士兵的人数。他的方法是:让士兵先列成三列纵队(每行三人),再列成五列纵队(每行五人),最后列成七列纵队(每行七人)。他只要知道这队士兵大约的人数,就可以根据这三次列队排在最后一行的士兵是几个人,而推算出这队士兵的准确人数。如果韩信当时看到的三次列队,最后一行的士兵人数分别是2人、2人、4人,并知道这队士兵约在三四百人之间,你能很快推算出这队士兵的人数吗?

(3)和尚分馒头

我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:

一百馒头一百僧,

大僧三个更无争,

小僧三人分一个,

大小和尚各几丁?"

如果译成白话文,其意思是:有100个和尚分100只馒头,正好分完。如果大和尚一人分3只,小和尚3人分一只,试问大、小和尚各有几人?

方法一,用方程解:

解:设大和尚有x人,则小和尚有(100-x)人,根据题意列得方程:

  3x+1/3(100-x)=100

  解方程得:x=25

  小和尚:100-25=75人

方法二,鸡兔同笼法:

(1)假设100人全是大和尚,应吃馒头多少个?

  3×100=300(个).

(2)这样多吃了几个呢?

  300-100=200(个).

(3)为什么多吃了200个呢?这是因为把小和尚当成大和尚。那么把小和尚当成大和尚时,每个小和尚多算了几个馒头?

  3-1/3=8/3

(4)每个小和尚多算了8/3个馒头,一共多算了200个,所以小和尚有:

  200÷8/3=75(人)

  大和尚:100-75=25(人)

方法三,分组法:

由于大和尚一人分3只馒头,小和尚3人分一只馒头。我们可以把3个小和尚与1个大和尚编为一组,这样每组4个和尚刚好分4个馒头,那么100个和尚总共分为100÷(3+1)=25组,因为每组有1个大和尚,所以有25个大和尚;又因为每组有3个小和尚,所以有25×3=75个小和尚这是《直指算法统宗》里的解法,原话是:"置僧一百为实,以三一并得四为法除之,得大僧二十五个。"所谓"实"便是"被除数","法"便是"除数"。列式就是:

  100÷(3+1)=25,100-25=75。 我国古代劳动人民的智慧由此可见一斑。

(4) 以碗知僧

有一位妇女在河边洗碗,过路人问她为什么洗这么多碗?她回答说:家中来了很多客人,他们每两人合用一只饭碗,每三人合用一只汤碗,每四人合用一只菜碗,共用了碗65只。你能从她家的用碗情况,算出她家来了多少客人吗?

(5) 百钱问题

今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。凡百钱买鸡百只。问鸡翁母雏各几何?

相传在南北朝时期(公元 386 年——公元 589 年),我国北方出了一个“神童”,他反映敏捷,计算能力超群,许多连大人一时也难以解答的问题,他一下子就给算出来了。远远近近的人都喜欢找他计算数学问题。

“神童”的名气越来越大,传到当时宰相的耳中。有一天,宰相为了弄清“神童”是真是假,特地把“神童”的父亲叫了去,给了他 100 文钱,让第二天带 100 只鸡来。并规定 100 只鸡中公鸡、母鸡和小鸡都要有,而且不准多,也不准少,一定要刚好百钱百鸡。

当时,买 1 只公鸡 5 文钱,买 1 只母鸡 3 文钱,买 3 只小鸡才 1 文钱。怎样才能凑成百钱百鸡呢?“神童”想了一会,告诉父亲说,只要送 4 只公鸡、 18 只母鸡和 78 只小鸡就行了。

第二天,宰相见到送来的鸡正好满足百钱百鸡,大为惊奇。他想了一下,又给了 100 文钱,让明天再送 100 只鸡来,还规定不准只有 4 只公鸡。

这个问题也没有难住“神童”。他想了一会,叫父亲送 8 只公鸡、 11 只母鸡和 81 只小鸡去。还告诉父亲说,遇到类似问题,只要怎样怎样就行了。第二天,宰相见到了送来的 100 只鸡,赞叹不已。他又给了 100 文钱,要求下次再送 100 只鸡来。

岂料才一会儿,“神童”的父亲就送来了 100 只鸡。宰相一数:公鸡 12 只、母鸡 4 只、小鸡 84 只,正好又满足百钱百鸡……。

这个“神童”就是张丘建。他继续勤奋学习,终于成为一个著名的数学家。他的名著《张丘建算经》里,最后一个题目就是这个有趣的“百鸡问题”。

“百鸡问题”是一个不定方程问题。 X+y+z=100

设买公鸡、母鸡和小鸡分别为 x 、 y 、 z 只,依题意可得方程组: 5x+3y+ 1/3z=100

另外再设一个整数参数 k ,就有: x=4k , y=25 - 7k , z=75+3k 。

因为鸡数 x 、 y 、 z 都只能是正数,所以满足这组式子的 k 值只能是 1 、 2 、 3 。分别用 1 、 2 、 3 去替代式子中的 k ,算出的答案正好与张丘建的一模一样。

在张丘建生活的那个年代,人们还不会列出方程组,那么,他又是怎样算出题目的几个答案的呢?

原来,张丘建发现了一个秘密: 4 只公鸡值 20 文钱, 3 只小鸡值 1 文钱,合起来鸡数是 7 ,钱数是 21 ;而 7 只母鸡呢,鸡数是 7 ,钱数也是 21 。如果少买 7 只母鸡,就可以用这笔钱多买 4 只公鸡和 3 只小鸡。这样,百鸡仍是百鸡,百钱仍是百钱。所以,只要只有求出一个答案,根据这种法则,马上就可以求出其它的答案来。

这就是驰名中外的“百鸡术”。

(6)元代数学家朱世杰于1303年编著的《四元玉鉴》中有这样一道题目:

九百九十九文钱,及时梨果买一千,

一十一文梨九个,七枚果子四文钱。

问:梨果多少价几何?

答案:梨有657个,共803文钱,果有343个,共196文钱。

(7) 百羊问题

《算法统宗》里的问题《算法统宗》是中国古代数学著作之一。书里有这样一题:

甲牵一只肥羊走过来问牧羊人:“你赶的这群羊大概有100只吧”,牧羊人答:“如果这群羊加上一倍,再加上原来这群羊的一半,又加上原来这群羊的1/4,连你牵着的这只肥羊也算进去,才刚好凑满一百只。”请您算算这只牧羊人赶的这群羊共有多少只?

(8)李白买酒

我国唐代的天文学家、数学家张逐曾以“李白喝酒”为题材编了一道算题:“李白街上走,提壶去买酒。遇店加一倍,见花喝一斗(斗是古代酒具,也可作计量单位)。三遇店和花,喝光壶中酒,原有多少酒?”

解题方法:壶中原有酒量是要求的,并告诉了壶中酒的变化及最后结果--三遍成倍添(乘以2)定量减(减肥斗)而光。求解这个问题,一般以变化后的结果出发,利用乘与除、加与减的互逆关系,逐步逆推还原。"三遇店和花,喝光壶中酒",可见三遇花时壶中有酒巴斗,则三遇店时有酒巴1÷2斗,那么,二遇花时有酒1÷2+1斗,二遇店有酒(1÷2+1)÷2斗,于是一遇花时有酒(1÷2+1)÷2+1斗,一遇店时有酒,即壶中原有酒的计算式为

[(1÷2+1)÷2+1] ÷2=7/8(斗)

故壶中原有7/8斗酒。

以上解法的要点在于逆推还原,这种思路也可用示意图或线段图表示出来。

当然,若用代数方法来解,这题数量关系更明确。设壶中原有酒x斗,据题意列方程

2[2(2x-1)-1] -1=0

解之,得x=7/8(斗)

(9)浮屠增级

在明朝程大位<<算法统宗》中,有这样的一首歌谣,叫做浮屠增级歌。

远看巍巍塔七层 红光点点倍加倍

共灯三百八十一 请问尖头几盏灯

这首古诗描述的这个宝塔,其古称浮屠。本题说它一共有七层宝塔,每层悬挂的红灯数是上一层的2倍,问这个塔顶有几盏灯

答曰:顶层三盏浮屠就是佛塔本题是说,远处有一座雄伟的佛塔,塔上挂满了许多红灯,下一层灯数是上一层灯数的2倍,全塔共有381盏,试问顶层有几盏灯

首先列出各层灯数的比是 1:2:4:8:16:32:64 其总和为了+2+4+8+16+31+64=127 即把总灯数分成127份,一份的灯数是 361/127=3,这就是顶层的灯数

解:设一层x

x+2x+4x+8x+16x+32x+64x=381

127x=381

x=3

8x=24

答:第四层24红灯

(10)物不知数

我国古代数学名著<孙子算经>中有这样一道有关自然数的题,

今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二问物几何

翻译:一个数被3除于2,被5除3,被7除2求这个数

请你解释一下这个数是几

孙子算经>的解决方法大体是这样的,

先求被3/2,同时能被5,7都整除的数,最小为140

在求被5/3,同时能被3,7都整除的数,最小为63

最后求被7/2,同时能被3,5整除的数,最小为30

于是数140+63+30=233,就是一个所需求的数,

它减去或加上3,5,7的最小公倍数的105倍数,比如233-210=23

233+105=388,也是符合要求的数,所以符合要求的数有无限个最小的是23

《礼记·内则》篇提道,西周贵族子弟从9岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的“数”已经开始成为专门的课程。

春秋时期,筹算已得到普遍的应用,筹算记数法已普遍使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上也有相应的提高。

战国时期,随着铁器的出现,生产力的提高,我国开始了由奴隶制向封建制的过渡。新的生产关系促进了科学技术的发展与进步。此时私学开始出现。

最晚在春秋末期人们已经掌握了完备的十进位置值制记数法,普遍使用了算筹这种先进的计算工具。

秦汉时期,社会生产力得到恢复和发展,给数学和科学技术的发展带来新的活力,人们提出了若干算术难题,并创造了解勾股形、重差等新的数学方法。

同时,人们注重先秦文化典籍的收集、整理。作为数学新发展及先秦典籍的抢救工作的结晶,便是《九章算术》的成书。它是西汉丞相张苍、天文学家耿寿昌收集秦火遗残,加以整理删补而成的。

古籍九章算术

热门文章
    确认删除?
    回到顶部