七巧板的由来?

栏目:古籍资讯发布:2023-08-07浏览:5收藏

七巧板的由来?,第1张

宋朝有个叫黄伯思的人,对几何图形很有研究,他热情好客,发明了一种用6张小桌子组成的“宴几”——请客吃饭的小桌子。后来有人把它改进为7张桌组成的宴几,可以根据吃饭人数的不同,把桌子拼成不同的形状,比如3人拼成三角形,4人拼成四方形,6人拼成六方形……这样用餐时人人方便,气氛更好。后来,有人把宴几缩小改变到只有七块板,用它拼图,演变成一种玩具。因为它十分巧妙好玩,所以人们叫它“七巧板”。到了明末清初,皇宫中的人经常用它来庆贺节日和娱乐,拼成各种吉祥图案和文字,故宫博物院至今还保存着当时的七巧板呢!

今天,在世界上几乎没有人不知道七巧板和七巧图,它在国外被称为“唐图”(Tangram),意思是来自中国的拼图(不是唐代发明的图)。

七巧板的历史也许应该追溯到我国先秦的古籍《周髀算经》,其 中有正方形切割术,并由之证明了勾股定理。而当时是将大正方形切割成四个同样的三角形和一个小正方形,还不是七巧板。现在的七巧板是经过一段历史演变过程的,它是由宋代的燕几图到明代发展为蝶几图,到清初再演变成七巧图,到现在已经有两千五百多年的历史了。

18世纪,七巧板传到国外,立刻引起极大的兴趣,有些外国人通宵达旦地玩它,并叫它“唐图”,意思是“来自中国的拼图”。在欧洲,大约在1805年出版的《新编中国儿童谜解》中有24幅七巧图并附有一份木制的七巧板。随后,1810年在法国,1818年在德国和美国都纷纷出版了关于七巧板的书,在意大利出版的书中还介绍了中国历史。在这些书的前言中说:这是一种男女老少、达官贵族、平民百姓无不咸宜的消遣游戏,而且它不像其他赌具那样会让您输掉钱 财。

荷兰作家高罗佩在他的小说中写了一个哑巴男孩用七巧板拼字来补充他的手势。据说法国拿破仑被放逐后就常常玩七巧板来消磨岁月。

七巧板传往欧洲至今风靡不衰。1978年荷兰人JoosfElffers编写 了一本有关七巧板的书,书中搜罗了1600种图形,并被译成多国文字出版。

。 勾股定理:

勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(Pythagoras Theorem)。是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。

在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。如果直角三角形两直角边分别为a、b,斜边为c,那么a的平方+b的平方=c的平方,即αα+bb=cc

推广:把指数改为n时,等号变为小于号

当三角形为钝角时,那么a的平方+b的平方〈c的平方,即aa+bb〈cc

当三角形为锐角时,那么a的平方+b的平方〉c的平方,即aa+bb〉cc

据考证,人类对这条定理的认识,少说也超过 4000 年

勾股数:是指能组成a^+b^=c^的三个正整数称为勾股数

实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例。除上述两个例子外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角。但是,这一传说引起过许多数学史家的怀疑。比如说,美国的数学史家M•克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理。我们知道他们有拉绳人(测量员),但所传他们用13个等距的结把一根绳子分成等长的12段,一个工匠同时握住绳子的第1个结和第13个结,两个助手分别握住第4个结和第8个结,拉紧绳子,然后用来形成直角三角形之说,则从未在任何文件上得证实。”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥板书,据专家们考证,其中一块上面刻有如下问题:“一根长度为 30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为为3:4:5三角形的特殊例子;专家们还发现,在另一块泥板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数。这说明,勾股定理实际上早已进入了人类知识的宝库。

勾股定理是几何学中的明珠,它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家、画家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单又实用,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。(※关于勾股定理的详细证明,由于证明过程较为繁杂,不予收录。)

人们对勾股定理感兴趣的原因还在于它可以作推广。

欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。

从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。

勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。

若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。

如此等等

1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。

于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。

如下:

解:勾股定理的内容:直角三角形两直角边a、b的平方和等于斜边c的平方,

a^2;+b^2;=c^2;

说明:我国古代学者把直角三角形的较短直角边称为“勾”,较长直角边为“股”,斜边称为“弦”,所以把这个定理成为“勾股定理”。勾股定理揭示了直角三角形边之间的关系。

举例:如直角三角形的两个直角边分别为3、4,则斜边c^2= a^2+b^2=9+16=25

则说明斜边为5。

3、已知,如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四边形ABCD的面积。

美国总统的证明方法图

各具特色的证明方法三角学里有一个很重要的定理,我国称它为勾股定理,又叫商高定理。因为《周髀算经》提到,商高说过"勾三股四弦五"的话。下面介绍其中的几种证明。

最初的证明是分割型的。设a、b为直角三角形的直角边,c为斜边。考虑下图两个边长都是a+b的正方形A、B。将A分成六部分,将B分成五部分。由于八个小直角三角形是全等的,故从等量中减去等量,便可推出:斜边上的正方形等于两个直角边上的正方形之和。这里B中的四边形是边长为c的正方形是因为,直角三角形三个内角和等于两个直角。如上证明方法称为相减全等证法。B图就是我国《周髀算经》中的“弦图”。

下图是H.珀里加尔(Perigal)在1873年给出的证明,它是一种相加全等证法。其实这种证明是重新发现的,因为这种划分方法,labitibn Qorra(826~901)已经知道。(如:右图)下面的一种证法,是H•E•杜登尼(Dudeney)在1917年给出的。用的也是一种相加全等的证法。

如右图所示,边长为b的正方形的面积加上边长为a的正方形的面积,等于边长为c的正方形面积。

下图的证明方法,据说是L•达•芬奇(da Vinci, 1452~1519)设计的,用的是相减全等的证明法。

欧几里得(Euclid)在他的《原本》第一卷的命题47中,给出了勾股定理的一个极其巧妙的证明,如次页上图。由于图形很美,有人称其为“修士的头巾”,也有人称其为“新娘的轿椅”,实在是有趣。华罗庚教授曾建议将此图发往宇宙,和“外星人”去交流。其证明的梗概是:

(AC)2=2△JAB=2△CAD=ADKL。

同理,(BC)2=KEBL

所以

(AC)2+(BC)2=ADKL+KEBL=(BC)2

印度数学家兼天文学家婆什迦罗(Bhaskara,活跃于1150年前后)对勾股定理给出一种奇妙的证明,也是一种分割型的证明。如下图所示,把斜边上的正方形划分为五部分。其中四部分都是与给定的直角三角形全等的三角形;一部分为两直角边之差为边长的小正方形。很容易把这五部分重新拼凑在一起,得到两个直角边上的正方形之和。事实上,

婆什迦罗还给出了下图的一种证法。画出直角三角形斜边上的高,得两对相似三角形,从而有

c/b=b/m,

c/a=a/n,

cm=b2

cn=a2

两边相加得

a2+b2=c(m+n)=c2

这个证明,在十七世纪又由英国数学家J.沃利斯(Wallis, 1616~1703)重新发现。

有几位美国总统与数学有着微妙联系。G•华盛顿曾经是一个著名的测量员。T•杰弗逊曾大力促进美国高等数学教育。A.林肯是通过研究欧几里得的《原本》来学习逻辑的。更有创造性的是第十七任总统J.A.加菲尔德(Garfield, 1831~1888),他在学生时代对初等数学就具有强烈的兴趣和高超的才能。在1876年,(当时他是众议院议员,五年后当选为美国总统)给出了勾股定理一个漂亮的证明,曾发表于《新英格兰教育杂志》。证明的思路是,利用梯形和直角三角形面积公式。如次页图所示,是由三个直角三角形拼成的直角梯形。用不同公式,求相同的面积得

a2+2ab+b2=2ab+c2

a2+b2=c2

这种证法,在中学生学习几何时往往感兴趣。

关于这个定理,有许多巧妙的证法(据说有近400种),下面向同学们介绍几种,它们都是用拼图的方法来证明的。

证法1 如图26-2,在直角三角形ABC的外侧作正方形ABDE,ACFG,BCHK,它们的面积分别为c2,b2和a2。我们只要证明大正方形面积等于两个小正方形面积之和即可。

过C引CM‖BD,交AB于L,连接BC,CE。因为

AB=AE,AC=AG ∠CAE=∠BAG,

所以 △ACE≌△AGB

SAEML=SACFG (1)

同法可证

SBLMD=SBKHC (2)

(1)+(2)得

SABDE=SACFG+SBKHC,

即 c2=a2+b2

证法2 如图26-3(赵君卿图),用八个直角三角形ABC拼成一个大的正方形CFGH,它的边长是a+b,在它的内部有一个内接正方形ABED,它的边长为c,由图可知。

SCFGH=SABED+4×SABC,

所以 a2+b2=c2

证法3 如图26-4(梅文鼎图)。

在直角△ABC的斜边AB上向外作正方形ABDE,在直角边AC上又作正方形ACGF。可以证明(从略),延长GF必过E;延长CG到K,使GK=BC=a,连结KD,作DH⊥CF于H,则DHCK是边长为a的正方形。设

五边形ACKDE的面积=S

一方面,

S=正方形ABDE面积+2倍△ABC面积

=c2+ab (1)

另一方面,

S=正方形ACGF面积+正方形DHGK面积

+2倍△ABC面积

=b2+a2+ab (2)

由(1),(2)得

c2=a2+b2

证法4 如图26-5(项名达图),在直角三角形ABC的斜边上作正方形ABDE,又以直角三角形ABC的两个直角边CA,CB为基础完成一个边长为b的正方形BFGJ(图26-5)。可以证明(从略),GF的延长线必过D。延长AG到K,使GK=a,又作EH⊥GF于H,则EKGH必为边长等于a的正方形。

设五边形EKJBD的面积为S。一方面

S=SABDE+2SABC=c2+ab (1)

另一方面,

S=SBEFG+2•S△ABC+SGHFK

=b2+ab+a2

由(1),(2)

得出论证

都是用面积来进行验证:一个大的面积等于几个小面积的和。利用同一个面积的不同表示法来得到等式,从而化简得到勾股定理)图见http://ettedaeducom/21010000/vcm/0720ggdldoc

勾股定理是数学上证明方法最多的定理之一——有四百多种证法!但有记载的第一个证明——毕达哥拉斯的证明方法已经失传。目前所能见到的最早的一种证法,属于古希腊数学家欧几里得。他的证法采用演绎推理的形式,记载在数学巨著《几何原本》里。在中国古代的数学家中,最早对勾股定理进行证明的是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用数形结合的方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a) 2 。于是便可得如下的式子: 4×(ab/2)+(b-a) 2 =c 2 化简后便可得: a 2 +b 2 =c 2 亦即:c=(a 2 +b 2 ) (1/2) 赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。 以下网址为赵爽的“勾股圆方图”:http://cimg163com/catchpic/0/01/01F9D756BE31CE31F761A75CACC1410Cgif 以后的数学家大多继承了这一风格并且有发展, 只是具体图形的分合移补略有不同而已。 例如稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题。 以下网址为刘徽的“青朱出入图”:http://cimg163com/catchpic/A/A7/A7070D771214459D67A75E8675AA4DCBgif

勾股定理的应用非常广泛。我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:"禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。"这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。

勾股定理在我们生活中有很大范围的运用

勾股定理在现实生活的应用有这些方面

工程技术人员用勾股定理比较多,比如农村房屋的屋顶构造,就可以用勾股定理来计算,设计工程图纸也要用到勾股定理,在求与圆、三角形有关的数据时,多数可以用勾股定理。

物理上也有广泛应用,例如求几个力,或者物体的合速度,运动方向

古代也是大多应用于工程,例如修建房屋、修井、造车等等

 例1:

我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:"禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。"这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。

例2:

家装时,工人为了判断一个墙角是否标准直角可以分别在墙角向两个墙面量出30cm,40cm并标记在一个点,然后量这两点间距离是否是50cm如果超出一定误差,则说明墙角不是直角

比如 A点有一高杆在其附近B点要把从杆顶引下来的绳固定在此点。就可以算出绳子的长度要求了

例3:

在做木工活时,要是有大块的板材要定直角,就用勾股定理。角尺太小,在大板上画的直角误差大。在做焊工 活时,做大的框架,有一定要直角的也是用勾股定理。比如说我要一个直角,就取一个直角边3米,一个直角边4米,让斜边有5 米,那这个角就是直角了。

勾股定理的由来:

《周髀算经》上说,夏禹在实际测量中已经初步运用这个定理。这本书上还记载,有个叫陈子的数学家,应用这个定理来测量太阳的高度、太阳的直径和天地的长阔等。

5000年前的埃及人,也知道这一定理的特例,也就是勾3、股4、弦5,并用它来测定直角。以后才渐渐推广到普遍的情况。 金字塔的底部,四正四方,正对准东西南北,可见方向测得很准,四角又是严格的直角。而要量得直角,当然可以采用作垂直线的方法,但是如果将勾股定理反过来,也就是说:只要三角形的三边是3、4、5,或者符合的公式,那么弦边对面的角一定是直角。到了公元前540年,希腊数学家毕达哥拉斯注意到了直角三角形三边是3、4、5,或者是5、12、13的时候,有这么个关系,他想:是不是所有直角三角形的三边都符合这个规律?反过来,三边符合这个规律的,是不是直角三角形?

他搜集了许多例子,结果都对这两个问题作了肯定的回答。他高兴非常,杀了一百头牛来祝贺。

以后,西方人就将这个定理称为毕达哥拉斯定理

参考资料

江晓原《周髀算经》新论·译注 上海:上海交通大学出版社,2015年06月 

三角学里有一个很重要的定理,我国称它为勾股定理,又叫商高定理。因为《周髀算经》提到,商高说过"勾三股四弦五"的话。下面介绍其中的几种证明。

最初的证明是分割型的。设a、b为直角三角形的直角边,c为斜边。考虑下图两个边长都是a+b的正方形A、B。将A分成六部分,将B分成五部分。由于八个小直角三角形是全等的,故从等量中减去等量,便可推出:斜边上的正方形等于两个直角边上的正方形之和。这里B中的四边形是边长为c的正方形是因为,直角三角形三个内角和等于两个直角。如上证明方法称为相减全等证法。B图就是我国《周髀算经》中的“弦图”。

下图是H.珀里加尔(Perigal)在1873年给出的证明,它是一种相加全等证法。其实这种证明是重新发现的,因为这种划分方法,labitibn Qorra(826~901)已经知道。(如:右图)下面的一种证法,是H•E•杜登尼(Dudeney)在1917年给出的。用的也是一种相加全等的证法。

如右图所示,边长为b的正方形的面积加上边长为a的正方形的面积,等于边长为c的正方形面积。

下图的证明方法,据说是L•达•芬奇(da Vinci, 1452~1519)设计的,用的是相减全等的证明法。

欧几里得(Euclid)在他的《原本》第一卷的命题47中,给出了勾股定理的一个极其巧妙的证明,如次页上图。由于图形很美,有人称其为“修士的头巾”,也有人称其为“新娘的轿椅”,实在是有趣。华罗庚教授曾建议将此图发往宇宙,和“外星人”去交流。其证明的梗概是:

(AC)2=2△JAB=2△CAD=ADKL。

同理,(BC)2=KEBL

所以

(AC)2+(BC)2=ADKL+KEBL=(BC)2

印度数学家兼天文学家婆什迦罗(Bhaskara,活跃于1150年前后)对勾股定理给出一种奇妙的证明,也是一种分割型的证明。如下图所示,把斜边上的正方形划分为五部分。其中四部分都是与给定的直角三角形全等的三角形;一部分为两直角边之差为边长的小正方形。很容易把这五部分重新拼凑在一起,得到两个直角边上的正方形之和。事实上,

婆什迦罗还给出了下图的一种证法。画出直角三角形斜边上的高,得两对相似三角形,从而有

c/b=b/m,

c/a=a/n,

cm=b2

cn=a2

两边相加得

a2+b2=c(m+n)=c2

这个证明,在十七世纪又由英国数学家J.沃利斯(Wallis, 1616~1703)重新发现。

有几位美国总统与数学有着微妙联系。G•华盛顿曾经是一个著名的测量员。T•杰弗逊曾大力促进美国高等数学教育。A.林肯是通过研究欧几里得的《原本》来学习逻辑的。更有创造性的是第十七任总统J.A.加菲尔德(Garfield, 1831~1888),他在学生时代对初等数学就具有强烈的兴趣和高超的才能。在1876年,(当时他是众议院议员,五年后当选为美国总统)给出了勾股定理一个漂亮的证明,曾发表于《新英格兰教育杂志》。证明的思路是,利用梯形和直角三角形面积公式。如次页图所示,是由三个直角三角形拼成的直角梯形。用不同公式,求相同的面积得

a2+2ab+b2=2ab+c2

a2+b2=c2

这种证法,在中学生学习几何时往往感兴趣。

关于这个定理,有许多巧妙的证法(据说有近400种),下面向同学们介绍几种,它们都是用拼图的方法来证明的。

证法1 如图26-2,在直角三角形ABC的外侧作正方形ABDE,ACFG,BCHK,它们的面积分别为c2,b2和a2。我们只要证明大正方形面积等于两个小正方形面积之和即可。

过C引CM‖BD,交AB于L,连接BC,CE。因为

AB=AE,AC=AG ∠CAE=∠BAG,

所以 △ACE≌△AGB

SAEML=SACFG (1)

同法可证

SBLMD=SBKHC (2)

(1)+(2)得

SABDE=SACFG+SBKHC,

即 c2=a2+b2

证法2 如图26-3(赵君卿图),用八个直角三角形ABC拼成一个大的正方形CFGH,它的边长是a+b,在它的内部有一个内接正方形ABED,它的边长为c,由图可知。

SCFGH=SABED+4×SABC,

所以 a2+b2=c2

证法3 如图26-4(梅文鼎图)。

在直角△ABC的斜边AB上向外作正方形ABDE,在直角边AC上又作正方形ACGF。可以证明(从略),延长GF必过E;延长CG到K,使GK=BC=a,连结KD,作DH⊥CF于H,则DHCK是边长为a的正方形。设

五边形ACKDE的面积=S

一方面,

S=正方形ABDE面积+2倍△ABC面积

=c2+ab (1)

另一方面,

S=正方形ACGF面积+正方形DHGK面积

+2倍△ABC面积

=b2+a2+ab (2)

由(1),(2)得

c2=a2+b2

证法4 如图26-5(项名达图),在直角三角形ABC的斜边上作正方形ABDE,又以直角三角形ABC的两个直角边CA,CB为基础完成一个边长为b的正方形BFGJ(图26-5)。可以证明(从略),GF的延长线必过D。延长AG到K,使GK=a,又作EH⊥GF于H,则EKGH必为边长等于a的正方形。

设五边形EKJBD的面积为S。一方面

S=SABDE+2SABC=c2+ab (1)

另一方面,

S=SBEFG+2•S△ABC+SGHFK

=b2+ab+a2

由(1),(2)

得出论证

都是用面积来进行验证:一个大的面积等于几个小面积的和。利用同一个面积的不同表示法来得到等式,从而化简得到勾股定理)图见http://ettedaeducom/21010000/vcm/0720ggdldoc

勾股定理是数学上证明方法最多的定理之一——有四百多种证法!但有记载的第一个证明——毕达哥拉斯的证明方法已经失传。目前所能见到的最早的一种证法,属于古希腊数学家欧几里得。他的证法采用演绎推理的形式,记载在数学巨著《几何原本》里。在中国古代的数学家中,最早对勾股定理进行证明的是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用数形结合的方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a) 2 。于是便可得如下的式子: 4×(ab/2)+(b-a) 2 =c 2 化简后便可得: a 2 +b 2 =c 2 亦即:c=(a 2 +b 2 ) (1/2) 赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。 以下网址为赵爽的“勾股圆方图”:http://cimg163com/catchpic/0/01/01F9D756BE31CE31F761A75CACC1410Cgif 以后的数学家大多继承了这一风格并且有发展, 只是具体图形的分合移补略有不同而已。 例如稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题。 以下网址为刘徽的“青朱出入图”:http://cimg163com/catchpic/A/A7/A7070D771214459D67A75E8675AA4DCBgif

勾股定理的应用非常广泛。我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:"禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。"这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。

勾股定理在我们生活中有很大范围的运用

三角学里有一个很重要的定理,我国称它为勾股定理,又叫商高定理。因为《周髀算经》提到,商高说过"勾三股四弦五"的话。下面介绍其中的几种证明。

最初的证明是分割型的。设a、b为直角三角形的直角边,c为斜边。考虑下图两个边长都是a+b的正方形A、B。将A分成六部分,将B分成五部分。由于八个小直角三角形是全等的,故从等量中减去等量,便可推出:斜边上的正方形等于两个直角边上的正方形之和。这里B中的四边形是边长为c的正方形是因为,直角三角形三个内角和等于两个直角。如上证明方法称为相减全等证法。B图就是我国《周髀算经》中的“弦图”。

下图是H.珀里加尔(Perigal)在1873年给出的证明,它是一种相加全等证法。其实这种证明是重新发现的,因为这种划分方法,labitibn Qorra(826~901)已经知道。(如:右图)下面的一种证法,是H•E•杜登尼(Dudeney)在1917年给出的。用的也是一种相加全等的证法。

如右图所示,边长为b的正方形的面积加上边长为a的正方形的面积,等于边长为c的正方形面积。

下图的证明方法,据说是L•达•芬奇(da Vinci, 1452~1519)设计的,用的是相减全等的证明法。

欧几里得(Euclid)在他的《原本》第一卷的命题47中,给出了勾股定理的一个极其巧妙的证明,如次页上图。由于图形很美,有人称其为“修士的头巾”,也有人称其为“新娘的轿椅”,实在是有趣。华罗庚教授曾建议将此图发往宇宙,和“外星人”去交流。其证明的梗概是:

(AC)2=2△JAB=2△CAD=ADKL。

同理,(BC)2=KEBL

所以

(AC)2+(BC)2=ADKL+KEBL=(BC)2

印度数学家兼天文学家婆什迦罗(Bhaskara,活跃于1150年前后)对勾股定理给出一种奇妙的证明,也是一种分割型的证明。如下图所示,把斜边上的正方形划分为五部分。其中四部分都是与给定的直角三角形全等的三角形;一部分为两直角边之差为边长的小正方形。很容易把这五部分重新拼凑在一起,得到两个直角边上的正方形之和。事实上,

婆什迦罗还给出了下图的一种证法。画出直角三角形斜边上的高,得两对相似三角形,从而有

c/b=b/m,

c/a=a/n,

cm=b2

cn=a2

两边相加得

a2+b2=c(m+n)=c2

这个证明,在十七世纪又由英国数学家J.沃利斯(Wallis, 1616~1703)重新发现。

有几位美国总统与数学有着微妙联系。G•华盛顿曾经是一个著名的测量员。T•杰弗逊曾大力促进美国高等数学教育。A.林肯是通过研究欧几里得的《原本》来学习逻辑的。更有创造性的是第十七任总统J.A.加菲尔德(Garfield, 1831~1888),他在学生时代对初等数学就具有强烈的兴趣和高超的才能。在1876年,(当时他是众议院议员,五年后当选为美国总统)给出了勾股定理一个漂亮的证明,曾发表于《新英格兰教育杂志》。证明的思路是,利用梯形和直角三角形面积公式。如次页图所示,是由三个直角三角形拼成的直角梯形。用不同公式,求相同的面积得

a2+2ab+b2=2ab+c2

a2+b2=c2

这种证法,在中学生学习几何时往往感兴趣。

关于这个定理,有许多巧妙的证法(据说有近400种),下面向同学们介绍几种,它们都是用拼图的方法来证明的。

证法1 如图26-2,在直角三角形ABC的外侧作正方形ABDE,ACFG,BCHK,它们的面积分别为c2,b2和a2。我们只要证明大正方形面积等于两个小正方形面积之和即可。

过C引CM‖BD,交AB于L,连接BC,CE。因为

AB=AE,AC=AG ∠CAE=∠BAG,

所以 △ACE≌△AGB

SAEML=SACFG (1)

同法可证

SBLMD=SBKHC (2)

(1)+(2)得

SABDE=SACFG+SBKHC,

即 c2=a2+b2

证法2 如图26-3(赵君卿图),用八个直角三角形ABC拼成一个大的正方形CFGH,它的边长是a+b,在它的内部有一个内接正方形ABED,它的边长为c,由图可知。

SCFGH=SABED+4×SABC,

所以 a2+b2=c2

证法3 如图26-4(梅文鼎图)。

在直角△ABC的斜边AB上向外作正方形ABDE,在直角边AC上又作正方形ACGF。可以证明(从略),延长GF必过E;延长CG到K,使GK=BC=a,连结KD,作DH⊥CF于H,则DHCK是边长为a的正方形。设

五边形ACKDE的面积=S

一方面,

S=正方形ABDE面积+2倍△ABC面积

=c2+ab (1)

另一方面,

S=正方形ACGF面积+正方形DHGK面积

+2倍△ABC面积

=b2+a2+ab (2)

由(1),(2)得

c2=a2+b2

证法4 如图26-5(项名达图),在直角三角形ABC的斜边上作正方形ABDE,又以直角三角形ABC的两个直角边CA,CB为基础完成一个边长为b的正方形BFGJ(图26-5)。可以证明(从略),GF的延长线必过D。延长AG到K,使GK=a,又作EH⊥GF于H,则EKGH必为边长等于a的正方形。

设五边形EKJBD的面积为S。一方面

S=SABDE+2SABC=c2+ab (1)

另一方面,

S=SBEFG+2•S△ABC+SGHFK

=b2+ab+a2

由(1),(2)

得出论证

都是用面积来进行验证:一个大的面积等于几个小面积的和。利用同一个面积的不同表示法来得到等式,从而化简得到勾股定理)图见http://ettedaeducom/21010000/vcm/0720ggdldoc

勾股定理是数学上证明方法最多的定理之一——有四百多种证法!但有记载的第一个证明——毕达哥拉斯的证明方法已经失传。目前所能见到的最早的一种证法,属于古希腊数学家欧几里得。他的证法采用演绎推理的形式,记载在数学巨著《几何原本》里。在中国古代的数学家中,最早对勾股定理进行证明的是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用数形结合的方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a) 2 。于是便可得如下的式子: 4×(ab/2)+(b-a) 2 =c 2 化简后便可得: a 2 +b 2 =c 2 亦即:c=(a 2 +b 2 ) (1/2) 赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。 以下网址为赵爽的“勾股圆方图”:http://cimg163com/catchpic/0/01/01F9D756BE31CE31F761A75CACC1410Cgif 以后的数学家大多继承了这一风格并且有发展, 只是具体图形的分合移补略有不同而已。 例如稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题。 以下网址为刘徽的“青朱出入图”:http://cimg163com/catchpic/A/A7/A7070D771214459D67A75E8675AA4DCBgif

勾股定理的应用非常广泛。我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:"禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。"这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。

勾股定理在我们生活中有很大范围的运用

三角学里有一个很重要的定理,我国称它为勾股定理,又叫商高定理。因为《周髀算经》提到,商高说过"勾三股四弦五"的话。下面介绍其中的几种证明。

最初的证明是分割型的。设a、b为直角三角形的直角边,c为斜边。考虑下图两个边长都是a+b的正方形A、B。将A分成六部分,将B分成五部分。由于八个小直角三角形是全等的,故从等量中减去等量,便可推出:斜边上的正方形等于两个直角边上的正方形之和。这里B中的四边形是边长为c的正方形是因为,直角三角形三个内角和等于两个直角。如上证明方法称为相减全等证法。B图就是我国《周髀算经》中的“弦图”。

下图是H.珀里加尔(Perigal)在1873年给出的证明,它是一种相加全等证法。其实这种证明是重新发现的,因为这种划分方法,labitibn Qorra(826~901)已经知道。(如:右图)下面的一种证法,是H•E•杜登尼(Dudeney)在1917年给出的。用的也是一种相加全等的证法。

如右图所示,边长为b的正方形的面积加上边长为a的正方形的面积,等于边长为c的正方形面积。

下图的证明方法,据说是L•达•芬奇(da Vinci, 1452~1519)设计的,用的是相减全等的证明法。

欧几里得(Euclid)在他的《原本》第一卷的命题47中,给出了勾股定理的一个极其巧妙的证明,如次页上图。由于图形很美,有人称其为“修士的头巾”,也有人称其为“新娘的轿椅”,实在是有趣。华罗庚教授曾建议将此图发往宇宙,和“外星人”去交流。其证明的梗概是:

(AC)2=2△JAB=2△CAD=ADKL。

同理,(BC)2=KEBL

所以

(AC)2+(BC)2=ADKL+KEBL=(BC)2

印度数学家兼天文学家婆什迦罗(Bhaskara,活跃于1150年前后)对勾股定理给出一种奇妙的证明,也是一种分割型的证明。如下图所示,把斜边上的正方形划分为五部分。其中四部分都是与给定的直角三角形全等的三角形;一部分为两直角边之差为边长的小正方形。很容易把这五部分重新拼凑在一起,得到两个直角边上的正方形之和。事实上,

婆什迦罗还给出了下图的一种证法。画出直角三角形斜边上的高,得两对相似三角形,从而有

c/b=b/m,

c/a=a/n,

cm=b2

cn=a2

两边相加得

a2+b2=c(m+n)=c2

这个证明,在十七世纪又由英国数学家J.沃利斯(Wallis, 1616~1703)重新发现。

有几位美国总统与数学有着微妙联系。G•华盛顿曾经是一个著名的测量员。T•杰弗逊曾大力促进美国高等数学教育。A.林肯是通过研究欧几里得的《原本》来学习逻辑的。更有创造性的是第十七任总统J.A.加菲尔德(Garfield, 1831~1888),他在学生时代对初等数学就具有强烈的兴趣和高超的才能。在1876年,(当时他是众议院议员,五年后当选为美国总统)给出了勾股定理一个漂亮的证明,曾发表于《新英格兰教育杂志》。证明的思路是,利用梯形和直角三角形面积公式。如次页图所示,是由三个直角三角形拼成的直角梯形。用不同公式,求相同的面积得

a2+2ab+b2=2ab+c2

a2+b2=c2

这种证法,在中学生学习几何时往往感兴趣。

关于这个定理,有许多巧妙的证法(据说有近400种),下面向同学们介绍几种,它们都是用拼图的方法来证明的。

证法1 如图26-2,在直角三角形ABC的外侧作正方形ABDE,ACFG,BCHK,它们的面积分别为c2,b2和a2。我们只要证明大正方形面积等于两个小正方形面积之和即可。

过C引CM‖BD,交AB于L,连接BC,CE。因为

AB=AE,AC=AG ∠CAE=∠BAG,

所以 △ACE≌△AGB

SAEML=SACFG (1)

同法可证

SBLMD=SBKHC (2)

(1)+(2)得

SABDE=SACFG+SBKHC,

即 c2=a2+b2

证法2 如图26-3(赵君卿图),用八个直角三角形ABC拼成一个大的正方形CFGH,它的边长是a+b,在它的内部有一个内接正方形ABED,它的边长为c,由图可知。

SCFGH=SABED+4×SABC,

所以 a2+b2=c2

证法3 如图26-4(梅文鼎图)。

在直角△ABC的斜边AB上向外作正方形ABDE,在直角边AC上又作正方形ACGF。可以证明(从略),延长GF必过E;延长CG到K,使GK=BC=a,连结KD,作DH⊥CF于H,则DHCK是边长为a的正方形。设

五边形ACKDE的面积=S

一方面,

S=正方形ABDE面积+2倍△ABC面积

=c2+ab (1)

另一方面,

S=正方形ACGF面积+正方形DHGK面积

+2倍△ABC面积

=b2+a2+ab (2)

由(1),(2)得

c2=a2+b2

证法4 如图26-5(项名达图),在直角三角形ABC的斜边上作正方形ABDE,又以直角三角形ABC的两个直角边CA,CB为基础完成一个边长为b的正方形BFGJ(图26-5)。可以证明(从略),GF的延长线必过D。延长AG到K,使GK=a,又作EH⊥GF于H,则EKGH必为边长等于a的正方形。

设五边形EKJBD的面积为S。一方面

S=SABDE+2SABC=c2+ab (1)

另一方面,

S=SBEFG+2•S△ABC+SGHFK

=b2+ab+a2

由(1),(2)

得出论证

都是用面积来进行验证:一个大的面积等于几个小面积的和。利用同一个面积的不同表示法来得到等式,从而化简得到勾股定理)图见http://ettedaeducom/21010000/vcm/0720ggdldoc

勾股定理是数学上证明方法最多的定理之一——有四百多种证法!但有记载的第一个证明——毕达哥拉斯的证明方法已经失传。目前所能见到的最早的一种证法,属于古希腊数学家欧几里得。他的证法采用演绎推理的形式,记载在数学巨著《几何原本》里。在中国古代的数学家中,最早对勾股定理进行证明的是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用数形结合的方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a) 2 。于是便可得如下的式子: 4×(ab/2)+(b-a) 2 =c 2 化简后便可得: a 2 +b 2 =c 2 亦即:c=(a 2 +b 2 ) (1/2) 赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。 以下网址为赵爽的“勾股圆方图”:http://cimg163com/catchpic/0/01/01F9D756BE31CE31F761A75CACC1410Cgif 以后的数学家大多继承了这一风格并且有发展, 只是具体图形的分合移补略有不同而已。 例如稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题。 以下网址为刘徽的“青朱出入图”:http://cimg163com/catchpic/A/A7/A7070D771214459D67A75E8675AA4DCBgif

勾股定理的应用非常广泛。我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:"禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。"这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。

勾股定理在我们生活中有很大范围的运用

热门文章
    确认删除?
    回到顶部