九章算术是谁编写的

栏目:古籍资讯发布:2023-08-08浏览:1收藏

九章算术是谁编写的,第1张

《九章算术》最初是由谁、在什么时候开始编纂的,现在已经难以确考了据数学史家们研究,这部著作是我国秦汉时期的数学家们历时一,二百年之久的智慧结晶,汇集了当时数学研究的主要成就,至迟在公元一世纪时形成了流传至今的定本在此后一千多年间,《九章算术》一直是我国的数学教科书它还影响到国外,朝鲜和日本也都曾把它当作教科书书中不少题目,后来还出现于印度的数学著作中,并且传到了中世纪的欧洲根据研究,西汉的张苍、耿寿昌曾经做过增补最后成书最迟在东汉前期,但是其基本内容在东汉后期已经基本定型《汉书艺文志》(班固根据刘歆《七略》写成者)中着录的数学书仅有《许商算术》、《杜忠算术》两种,并无《九章算术》,可见《九章算术》的出现要晚于《七略九章算术将书中的所有数学问题分为九大类,就是“九章”魏景元四年(263年),刘徽给《九章算术》作注,才大大弥补了这个缺陷刘徽是中国数学家之一他的生平现在知之甚少据考证,他是山东邹平人刘徽定义了若干数学概念,全面论证了《九章算术》的公式解法,提出了许多重要的思想、方法和命题,他在数学理论方面成绩斐然

基本简介

《九章算术》是中国古代张苍、耿寿昌所撰写的一部数学专著。是《算经十书》中最重要的一部,成于公元一世纪左右。其作者已不可考。一般认为它是经历代各家的增补修订,而逐渐成为现今定本的,西汉的张苍、耿寿昌曾经做过增补和整理,其时大体已成定本。最后成书最迟在东汉前期,现今流传的大多是在三国时期魏元帝景元四年(263年),刘徽为《九章》所作的注本。

《九章算术》内容十分丰富,全书总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,《方程》章还在世界数学史上首次阐述了负数及其加减运算法则。它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志中国古代数学形成了完整的体系。

2020年4月,列入《教育部基础教育课程教材发展中心中小学生阅读指导目录(2020年版)》初中段。

创作背景

《九章算术》是中国古代的数学专著,是"算经十书"(汉唐之间出现的十部古算书)中最重要的一种。魏晋时刘徽为《九章算术》作注时说:"周公制礼而有九数,九数之流则《九章》是矣",又说"汉北平侯张苍、大司农中丞耿寿昌皆以善算命世。苍等因旧文之遗残,各称删补,故校其目则与古或异,而所论多近语也"。根据研究,西汉的张苍、耿寿昌曾经做过增补。最后成书最迟在东汉前期,但是其基本内容在西汉后期已经基本定型。

《汉书艺文志》(班固根据刘歆《七略》写成者)中着录的数学书仅有《许商算术》、《杜忠算术》两种,并无《九章算术》,可见《九章算术》的出现要晚于《七略》。《后汉书马援传》载其侄孙马续"博览群书,善《九章算术》",马续是公元1世纪最后二、三十年时人。再根据《九章算术》中可供判定年代的官名、地名等来推断,现传本《九章算术》的成书年代大约是在公元1世纪的下半叶。九章算术将书中的所有数学问题分为九大类,是陈凯靖编辑的

1984年,在湖北出土了《算数书》书简。据考证,它比《九章算术》要早一个半世纪以上,书中有些内容和《九章算术》非常相似,一些内容的文句也基本相同。有人推测两书具有某些继承关系,但也有不同的看法认为《九章算术》没有直接受到《算数书》影响。

后世的数学家,大都是从《九章算术》开始学习和研究数学,许多人曾为它作过注释。其中最著名的有刘徽(263)、李淳风(656)等人。刘、李等人的注释和《九章算术》一起流传至今。唐宋两代,《九章算术》都由国家明令规定为教科书。到了北宋,《九章算术》还曾由政府进行过刊刻(1084),这是世界上最早的印刷本数学书。在现传本《九章算术》中,最早的版本乃是上述北宋本的南宋翻刻本(1213),现藏于上海图书馆(孤本,残,只余前五卷)。清代戴震由《永乐大典》中抄出《九章算术》全书,并作了校勘。此后的《四库全书》本、武英殿聚珍本、孔继涵刻的《算经十书》本(1773)等,大多数都是以戴校本为底本的。

作为一部世界数学名著,《九章算术》早在隋唐时期即已传入朝鲜、日本。它已被译成日、俄、德、法等多种文字版本。

作品思想

《九章算术》确定了中国古代数学的框架,以计算为中心的特点,密切联系实际,以解决人们生产、生活中的数学问题为目的的风格。其影响之深,以致以后中国数学着作大体采取两种形式:或为之作注,或仿其体例着书;甚至西算传入中国之后,人们着书立说时还常常把包括西算在内的数学知识纳入九章的框架。然而,《九章算术》亦有其不容忽视的缺点:没有任何数学概念的定义,也没有给出任何推导和证明。魏景元四年(263年),刘徽给《九章算术》作注,才大大弥补了这个缺陷。

刘徽是中国数学家之一。他的生平知之甚少。据考证,他是山东邹平人。刘徽定义了若干数学概念,全面论证了《九章算术》的公式解法,提出了许多重要的思想、方法和命题,他在数学理论方面成绩斐然。

刘徽对数学概念的定义抽象而严谨。他揭示了概念的本质,基本符合现代逻辑学和数学对概念定义的要求。而且他使用概念时亦保持了其同一性。如他提出凡数相与者谓之率,把率定义为数量的相互关系。又如他把正负数定义为今两算得失相反,要令正负以名之,摆脱了正为余,负为欠的原始观念,从本质上揭示了正负数得失相反的相对关系。

《九章算术》的算法尽管抽象,但相互关系不明显,显得零乱。刘徽大大发展深化了中算中久已使用的率概念和齐同原理,把它们看作运算的纲纪。许多问题,只要找出其中的各种率关系,通过乘以散之,约以聚之,齐同以通之,都可以归结为今有术求解。

一平面(或立体)图形经过平移或旋转,其面积(或体积)不变。把一个平面(或立体)图形分解成若干部分,各部分面积(或体积)之和与原图形面积(或体积)相等。基于这两条不言自明的前提的出入相补原理,是中国古代数学进行几何推演和证明时最常用的原理。刘徽发展了出入相补原理,成功地证明了许多面积、体积以及可以化为面积、体积问题的勾股、开方的公式和算法的正确性。

正方形ABCD边长为a ,点B在AG上,

正方形EFGB边长为b ,点C在EB上,

正方形EHIA边长为c ,点H在FG上,

设IJ⊥AG交于J,HI交AG于K,AE交CD于L ;

∵ EA=EH=a,EB=EF=b,∠EBA=∠EFH=90°,

∴ Rt△EFH≌Rt△EBA,∠1=∠2, FH=BA=a ,

∴ Rt△EFH中,

直角边FH=a,直角边EF=b,斜边EH=c ,

∵ ∠2=∠3=∠4=90°-∠EAB,∠1=∠2,

∴ ∠1=∠3,又EH=AI=a,∠EFH=∠AJI=90°,

∴ Rt△EFH≌Rt△AJI,JI=FH=a ,

∵ ∠5=∠3=90°-∠AIJ,∠3=∠4 ,

∴ ∠4=∠5,又DA=JI=a,∠ADL=∠IJK=90°,

∴ Rt△ADL≌Rt△IJK,

∵ ∠6=∠1=90°-∠EHF,∠1=∠2 ,

∴ ∠2=∠6,又EC=HB=b-a,∠LCE=∠KGH=90°

∴ Rt△LCE≌Rt△KGH ;

∴综上所述:正方形ABCD面积+正方形EFGB面积

=正方形EHIA面积;

即:a²+b²=c² ;

∴ 直角三角形中,两条直角边的平方和等于斜边的平方。

《九章算术》是中国古代数学专著,是算经十书中最重要的一种。该书内容十分丰富,系统总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题。该书经多次增补,成书时间已不可考,但据估算最迟在公元一世纪已有了现传本。 许多人曾为它作过注释,其中不乏历史上的数学名人,最著名的有刘徽(公元263年)、李淳风(公元656年)等人。

,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中每道题有问(题目)、答(答案)、术(解题的步骤,但没有证明),有的是一题一术,有的是多题一术或一题多术.这些问题依照性质和解法分别隶属于方田、粟米、衰(音崔cui)分、少广、商功、均输、盈不足、方程及勾股九章

《九章算术》中的数学成就是多方面的:

(1)、在算术方面的主要成就有分数运算、比例问题和“盈不足”算法。《九章算术》是世界上最早系统叙述了分数运算的著作,在第二、三、六章中有许多比例问题,在世界上也是比较早的。“盈不足”算法需要给出两次假设,是一项创造,中世纪欧洲称它为“双设法”,有人认为它是由中国经中世纪阿拉伯国家传去的.

(2)、在几何方面,主要是面积、体积计算。

(3)、在代数方面,主要有一次方程组解法、开平方、开立方、一般二次方程解法等。“方程”一章还在世界数学史上首次引入了负数及其加减法运算法则.作为一部世界科学名著,《九章算术》在隋唐时期就已传入朝鲜、日本。现在它已被译成日、俄、德、英、法等多种文字。

我国最早的数学著作是《算数书》

数学与天文历法、中医药学、农学是中国古代最为发达的4门基础学科。可是,直到上世纪80年代初期,西汉张苍、耿寿昌在先秦“九数”的基础上编定的《九章算术》,还一直被公认为中国最早的数学著作。人们常常为社会制度急剧变革,生产力蓬勃发展,学术十分繁荣的春秋战国时期没有一部数学著作传世感到迷惑不解,也感到遗憾。但在1984年初,情况发生了变化。在湖北江陵张家山一座汉墓中出土了一批数学竹简,约有200余支完好,韦编虽已烂绝,编痕却犹存。其中一支背面有“算数书”三字,学术界因此将其定名为《算数书》。2000年《文物》杂志第9期发表了竹简《算数书》的释文。其中能够识别的有70条标题,71条相当抽象的公式,近百道数学问题及其解法。文物界认为,《算数书》的绝大多数内容和题目产生于秦或先秦,因此,《算数书》取代了《九章算术》成为目前所知道的中国传统数学最早的著作。

  众所周知,《九章算术》是中国和东方古代数学的代表作。其中的分数四则运算、比例和比例分配算法、盈不足算法、解勾股形的方法和勾股数组公式、多面体体积公式、开平方和开立方的方法、线性方程组解法,以及正负数加减法则等等成就居于当时世界的领先地位,有的超前其他文化传统几百年甚至上千年。《九章算术》的成书,标志着世界数学的重心从古希腊转移到了中国,从此,中国数学在世界数坛领先1500年左右。研究表明,《九章算术》的主要方法和成就在先秦就产生了,《算数书》的出土为此提供了佐证。

刘徽(约公元225年—295年)。

汉族,山东邹平县人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。

假设现在给定一个正方形BEGF。这道题目本身并没有难度,关键在于楼主不允许使用全等。

 

即便如此,可以把题目看成以H为动点在GF上移动,HE为边长,做一个正方形AEHI,因为H点是移动的,相应的A点也会跟着移动,但我可以和楼主保证,当H点移动到G点时,此刻AG=2BG或AB=BG,因为他们满足了各自之间的垂直关系。当H点移动到F点时,A点与B点重合。

 

 

根据以上的观点,得知正方形ABCD的边长是变化的。这样就满足了a^2+b^2=c^2前提,即我给你一个定量(假设是b),那么a的取值就随c的变化而变化。因为H点在GF上移动这个限制,所以也导致了AB的变化范围必须是在(0-b)之间。

 

 

如果楼主只是认为a、b、c是相较于边长,那么此题就显得毫无意义。关键是刘徽采用拓补的思路,即正方形AEHI=正方形ABCD+正方形BEFG。

 

在达成以上共识后,我们再来讨论拓补对于勾股定理的意义。我们假设AG与IH的交点为O

思路:

首先楼主限定了我不能用全等,那根据平行线之间成比例的关系。我们将三角形HEF旋转90度。使得,点A、E、H在同一直线上。此时,点B、E、F也在同一直线上,并且HF//AB,这样我们就能得到HF=AB=a(这个不是全等,这个是平行线之间,线段成比例的概念)你也可以认为这是将三角形HEF拓补到整个图形的右侧。

其实只要证明出AB=HF=a,那么GH=b-a,此题几乎已经破解。我们假设AG与IH的交点为O,那么根据平行线之间线段成比例的概念,我们可以将线段OG,GH,OH分别表示用a和b表示出来。

此时正方形AEHI的面积相当于三角形AIO,三角形ABE,三角形BOE,三角形EOH面积之和,且这些三角形都是直角三角形,个边长都可以用代数a和b表示出来,而正方形AEHI本身的面积就是c^2,所以不用担心会出现恒等式的情况。(注意只要将4个直角三角形的面积相加,不要列出等式,因为这本来就是相等的,肯定会是恒等式的概念,即A-B=0)

 证闭

关键我们要从这个问题中看见本质,其实就是H点在GF上移动,问你正方形边长AB与HF之间的关系,我们一但抓住本质,就很容易把这个问题想清楚。

这和我们生活中遇到很多情况都是一样的,为人处事但求一个明确的思路,看清问题的本质很有利于提升我们自己的效率,从而脱颖而出。

《礼记·内则》篇提道,西周贵族子弟从9岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为“六艺”之一的“数”已经开始成为专门的课程。

春秋时期,筹算已得到普遍的应用,筹算记数法已普遍使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上也有相应的提高。

战国时期,随着铁器的出现,生产力的提高,我国开始了由奴隶制向封建制的过渡。新的生产关系促进了科学技术的发展与进步。此时私学开始出现。

最晚在春秋末期人们已经掌握了完备的十进位置值制记数法,普遍使用了算筹这种先进的计算工具。

秦汉时期,社会生产力得到恢复和发展,给数学和科学技术的发展带来新的活力,人们提出了若干算术难题,并创造了解勾股形、重差等新的数学方法。

同时,人们注重先秦文化典籍的收集、整理。作为数学新发展及先秦典籍的抢救工作的结晶,便是《九章算术》的成书。它是西汉丞相张苍、天文学家耿寿昌收集秦火遗残,加以整理删补而成的。

古籍九章算术

热门文章
    确认删除?
    回到顶部