古希腊人是如何发明了几何学?
相传四千年前,埃及的尼罗河,每年洪水泛滥会淹没很多土地。
为了重新测量土地以便于征税收,埃及人对几何图形的面积、角度的计算和测量研究得越来越深入。
在古籍《莱因德纸草书》中就记载了各种平面图形、立体面积和体积的计算方法。
随着历史的发展,古希腊人整理了历年来积累的知识和经验,逐渐将知识抽象化,建立了几何的基本理论和定理。
扩展资料
几何学的发展史
1、欧氏几何的创始
公认的几何学的确立源自公元300多年前,希腊数学家欧几里得著作《原本》。欧几里得在
《原本》中创造性地用公理法对当时所了解的数学知识作了总结。欧几里得的《原本》是数学史上的一座里程碑,在数学中确立了推理的范式。他的思想被称作“公理化思想”。
2、解析几何的诞生
解析几何是变量数学最重要的体现。解析几何的基本思想是在平面上引入“坐标”的概念,并借助这种坐标在平面上的点和有序实数对(x,y)建立一一对应的关系,于是几何问题就转化为代数问题。
解析几何的真正创立者应该是法国数学家迪卡儿和费马。
3、非欧几何的诞生与发展
非欧几何的诞生源于人们长久以来对欧几里得《原本》中第五公设即平行公设的探讨,直到数学家高斯、波约和俄国数学家罗巴切夫斯基进行推理而得出的新的一套几何学定理,并将它命名为非欧几何,一般称为“罗氏几何”。
1854年德国数学家黎曼发展了罗巴切夫斯基的几何思想,从而
建立了一种更为一般化的几何,称为“黎曼几何”。直到19世纪后期,数学家贝尔特拉米、克莱因、庞加莱在欧氏空间建立了非欧几何的模型,非欧几何才得到理解和承认。
4、射影几何的发展
文艺复兴时期的几何发展源于对宗教绘画的更高追求。
5、几何学的统一
非欧几何的创立打破了长久以来人们认为只有欧氏几何的观念。希尔伯特为统一几何学的提出了实施方法,即公理化方法。这种公理系统透彻的阐述了几何学的逻辑关系和包含内容,完整的统一了几何学。
--几何学
1637年,法国的哲学家和数学家笛卡尔发表了他的著作《方法论》,这本书的后面有三篇附录,一篇叫《折光学》,一篇叫《流星学》,一篇叫《几何学》。当时的这个“几何学”实际上指的是数学,就像我国古代“算术”和“数学”是一个意思一样。 笛卡尔的《几何学》共分三卷,第一卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和“超立体”的作图,但他实际是代数问题,探讨方程的根的性质。后世的数学家和数学史学家都把笛卡尔的《几何学》作为解析几何的起点。 从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立起一种“普遍”的数学,把算术、代数、几何统一起来。他设想,把任何数学问题化为一个代数问题,在把任何代数问题归结到去解一个方程式。 为了实现上述的设想,笛卡尔茨从天文和地理的经纬制度出发,指出平面上的点和实数对(x,y)的对应关系。x,y的不同数值可以确定平面上许多不同的点,这样就可以用代数的方法研究曲线的性质。这就是解析几何的基本思想。
求采纳
《周髀》书上记载着数学的来历。
《周髀》是西汉初期的一部天文、数学著作。髀是量日影的标杆(亦称表),因书中记载了不少周代的天文知识,故名《周髀》。唐初凤选定数学课本时,取名《周髀算经》,这也是最早记载数学的古籍。在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”)。
数学的起源:
数学起源于公元前4世纪。公元前6世纪前,数学主要是关于“数”的研究。这一时期在古埃及、巴比伦、印度与中国等地区发展起来的数学,主要是计数、初等算术与算法,几何学则可以看作是应用算术。
从公元前6世纪开始,希腊数学的兴起,突出了对“形”的研究。数学于是成为了关于数与形的研究。公元前4世纪的希腊哲学家亚里士多德将数学定义为“数学是量的科学。”
直到16世纪,英国哲学家培根将数学分为“纯粹数学”与“混合数学”。在17世纪,笛卡儿认为:“凡是以研究顺序和度量为目的科学都与数学有关。”在19世纪,根据恩格斯的论述, 数学可以定义为:“数学是研究现实世界的空间形式与数量关系的科学。”
从20世纪80年代开始,学者们将数学简单的定义为关于“模式”的科学:“数学这个领域已被称为模式的科学, 其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。”
在我国古代,这门数学分科并不叫“几何”,而是叫作“形学”“几何”二字,在中文里原先也不是一个数学专有名词,而是个虚词,意思是“多少”比如三国时曹操那首著名的《短歌行》诗,有这么两句:“对酒当歌,人生几何”这里的“几何”就是多少的意思那么,是谁首先把“几何”一词作为数学的专业名词来使用的,用它来称呼这门数学分科的呢这是明末杰出的科学家徐光启
古希腊人是如何发明了几何学?
本文2023-09-23 15:37:43发表“古籍资讯”栏目。
本文链接:https://www.yizhai.net/article/69631.html