那本书上记载着数学的来历

栏目:古籍资讯发布:2023-08-04浏览:1收藏

那本书上记载着数学的来历,第1张

《周髀》书上记载着数学的来历。

《周髀》是西汉初期的一部天文、数学著作。髀是量日影的标杆(亦称表),因书中记载了不少周代的天文知识,故名《周髀》。唐初凤选定数学课本时,取名《周髀算经》,这也是最早记载数学的古籍。在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”)。  

数学的起源:

数学起源于公元前4世纪。公元前6世纪前,数学主要是关于“数”的研究。这一时期在古埃及、巴比伦、印度与中国等地区发展起来的数学,主要是计数、初等算术与算法,几何学则可以看作是应用算术。

从公元前6世纪开始,希腊数学的兴起,突出了对“形”的研究。数学于是成为了关于数与形的研究。公元前4世纪的希腊哲学家亚里士多德将数学定义为“数学是量的科学。”

直到16世纪,英国哲学家培根将数学分为“纯粹数学”与“混合数学”。在17世纪,笛卡儿认为:“凡是以研究顺序和度量为目的科学都与数学有关。”在19世纪,根据恩格斯的论述, 数学可以定义为:“数学是研究现实世界的空间形式与数量关系的科学。”

从20世纪80年代开始,学者们将数学简单的定义为关于“模式”的科学:“数学这个领域已被称为模式的科学, 其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。”

谈到中国数学史。谁都会盛赞《九章算术》这部数学巨著。

  公元前221年,秦始皇结束了长达5个多世纪的兼并、征战局面,建立起我国第一个统一的中央集权的封建主义国家。自秦至西汉前期,新兴的地主阶级奖励耕织,兴修水利,重视冶炼,建筑长城。在生产的推动下,科学技术获得了巨大的发展。西汉前期,从汉高祖到汉武帝,都注意劝民农桑,进一步发展为地主阶级服务的生产和科学技术。《九章算术》就是在这种历史条件下编成的。

  这部巨著是我国古代数学知识的全面总结。全书收集了实际的数学问题共246个,分为方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股等9章,所以定名为《九章算术》。

  “方田章”讲述四亩面积的计算,结合这种需要,系统地介绍了分数的加、减、乘、除四则运算,化带分数为假分数,以及求几个分母的最小公倍数的方法。根据现有的史料,《九章算术》是世界上最早记载分数运算法则的文献。欧洲人到15世纪才掌握这些法则。 “粟米章”研究各类粮食的交换。“衰分章”、“均用章”讨论按比例分配赋税与徭役。“盈不足章”根据两次假设所得出的盈余或不足,来推算问题的答案,它是我国古代数学的又一项创造,后来欧洲人就把它叫做“中国算法”。

  “少广章”介绍筹算开平方与开立方,其中也包含了分数的内容。“商功章”专门解决筑城、开渠等土木工程中所提出的各种体积计算问题。“勾股章”论述勾股定理和相似的直角三角形。并且提出了二次方程的筹算解法,这是世界上运用一定的算法求解二次方程的最早记录。

  “方程章”详细地研究了一次方程组的解法,引进了正负数的概念及其加减运算法则,这是我国古代数学中两项非常杰出的成就。在这一章里,共收集了18道实际的多元一次方程组的问题。例如,其中第一题为:“今有上禾三秉(古代容量单位),中禾二秉,下禾一秉,实三十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上禾一秉、中禾二秉,下禾三秉,实二十六斗。问上、中、下禾一秉各几何?”如果用现在的方法,设上、中、下禾一秉分别为x斗、y斗、z斗,那么可以得到方程组 我国古代解这类问题的方法(叫做“方程术”)是把方程各未知数的系数与常数项用算筹依次按“直行”排成一个“方程组。”这道题的“方程组”如下: 然后通过行的数乘与行、行之间的加减,逐个消去未知数,得到“方程组”的解。这些思想及形式,可以无愧地称之为近代高等代数中“矩阵”概念和“线性方程组矩阵解法”的先声。

  《九章算术》的全部内容说明,和其他一切科学一样,数学是从人的需要中产生的:是从丈量土地和测量容积,从计算时间和制造器皿产生的。《九章算术》密切结合实际,这反映了我国古代数学的鲜明特点和优良传统,对后来我国数学的发展产生了深远的影响。

《周髀算经》是中国现存最早的一部数学典籍,成书时间大约在两汉之间 (纪元之后)也有史家认为它的出现更早,是孕于周而成于西汉,甚至更有人说它出现在纪元前1000年

《九章算术》约成书于公元纪元前后,它系统地总结了我国从先秦到西汉中期的数学成就该书作者已无从查考,只知道西汉著名数学家张苍、耿寿昌等人曾经对它进行过增订删补全书分做九章,一共搜集了246个数学问题,按解题的方法和应用的范围分为九大类,每一大类作为一章

南北朝是中国古代数学的蓬勃发展时期,计有《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学著作问世

《算经十书》是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书。十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》。

公元600年,隋代刘焯在制订《皇极历》时,在世界上最早提出了等间距二次内插公式;唐代僧一行在其《大衍历》中将其发展为不等间距二次内插公式

贾宪在《黄帝九章算法细草》中提出开任意高次幂的“增乘开方法”,同样的方法至1819年才由英国人霍纳发现;贾宪的二项式定理系数表与17世纪欧洲出现的“巴斯加三角”是类似的遗憾的是贾宪的《黄帝九章算法细草》书稿已佚

秦九韶是南宋时期杰出的数学家1247年,他在《数书九章》中将“增乘开方法”加以推广,论述了高次方程的数值解法,并且例举20多个取材于实践的高次方程的解法(最高为十次方程)16世纪意大利人菲尔洛才提出三次方程的解法另外,秦九韶还对一次同余式理论进行过研究

李冶于1248年发表《测圆海镜》,该书是首部系统论述“天元术”(一元高次方程)的著作,在数学史上具有里程碑意义尤其难得的是,在此书的序言中,李冶公开批判轻视科学实践活动,将数学贬为“贱技”、“玩物”等长期存在的士风谬论

公元1261年,南宋杨辉(生卒年代不详)在《详解九章算法》中用“垛积术”求出几类高阶等差级数之和公元1274年他在《乘除通变本末》中还叙述了“九归捷法”,介绍了筹算乘除的各种运算法公元1280年,元代王恂、郭守敬等制订《授时历》时,列出了三次差的内插公式郭守敬还运用几何方法求出相当于现在球面三角的两个公式

公元1303年,元代朱世杰(生卒年代不详)著《四元玉鉴》,他把“天元术”推广为“四元术”(四元高次联立方程),并提出消元的解法,欧洲到公元1775年法国人别朱(Bezout)才提出同样的解法朱世杰还对各有限项级数求和问题进行了研究,在此基础上得出了高次差的内插公式,欧洲到公元1670年英国人格里高利(Gregory)和公元1676一1678年间牛顿(Newton)才提出内插法的一般公式

14世纪中、后叶明王朝建立以后,统治者奉行以八股文为特征的科举制度,在国家科举考试中大幅度消减数学内容,于是自此中国古代数学便开始呈现全面衰退之势

明代珠算开始普及于中国1592年程大位编撰的《直指算法统宗》是一部集珠算理论之大成的著作但是有人认为,珠算的普及是抑制建立在筹算基础之上的中国古代数学进一步发展的主要原因之一

由于演算天文历法的需要,自16世纪末开始,来华的西方传教士便将西方一些数学知识传入中国数学家徐光启向意大利传教士利马窦学习西方数学知识,而且他们还合译了《几何原本》的前6卷(1607年完成)徐光启应用西方的逻辑推理方法论证了中国的勾股测望术,因此而撰写了《测量异同》和《勾股义》两篇著作邓玉函编译的《大测》〔2卷〕、《割圆八线表》〔6卷〕和罗雅谷的《测量全义》〔10卷〕是介绍西方三角学的著作

《算经十书》(包括《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》)现《缀术》已经失传,《夏侯阳算经》也为找到真本。秦九韶的《数书九章》、李冶的《测圆海镜》和《益古演段》、杨辉的《详解九章算法》、《日用算法》、《杨辉算法》,朱世杰的《算学启蒙》和《四元玉鉴》、程大位的《算法统综》等。国外的有:欧几里得的《几何原本》、阿基米德的《抛物线的求积》、《论求和圆柱》、《论螺线》、《圆之度量》、《群牛问题》、阿耶波多(古印度)的《阿耶波多历算书》、婆罗摩笈多的《莉拉沃蒂》、《算法本源》、《婆罗摩笈多正体系》、花拉子米(古阿拉伯)的《印度计数法》和《还原与对消》。近现代的有:笛卡尔的《几何学》、牛顿的《自然哲学之数学原理》、莱布尼茨的《一种求极大与极小值和求切线的新方法》、欧拉的《无穷小分析引论》、拉普拉斯的《概率的分析理论》等等。

热门文章
    确认删除?
    回到顶部