天究竟有多高?

栏目:古籍资讯发布:2023-10-04浏览:3收藏

天究竟有多高?,第1张

如果用科学的说法来说的话,地的厚度应该是地球的直径,关于天的高度,现在科学家已经用科学的方法观测到100万光年的距离,还没有看到宇宙的边缘,也就是说,现在的观念应该是天有无限高(最起码是应该大于100万光年)。

天到底有多高呢?人类一直在孜孜以求,探索着这个问题:

1783年,法国的孟特格菲兄弟俩成功地释放了人类第一个热气球

,热气球载着两名勇敢者飞上天空。这个热气球上升了900多米。

1804年,法国科学家盖吕萨克乘气球上升到了约7千米的高度。

1892年,科学家设计出带有仪器的无人乘坐的气球,这样就能升得更高。

20世纪30年代,科学家设计出能保持地球表面空气压力和温度的密封舱,人类得以进入更高的大气层。

1938年,被命名为“探险者2号”的气球上升到21千米的高空。

1960年,载人气球已能上升到345千米,而不载人气球已能到达40-50米的高空。

再后来,飞机、火箭、人造地球卫星的发明,使人们对大气层有了更科学的认识。

大气层随与地表面的高度不同,其内含的成份、物理、化学特征不同,科学家为了研究揭开大气的秘密,把整个大气层根据其温度变化、成分、电磁特性随高度分布的不同而分成若干层次。

温度变化科学家将大气层分为5层:

对流层:从地面到大约10~16千米处(极地大约8~9千米,赤道15~18千米),是大气层的最底层。这一层集中了约整个大气的四分之三的质量和几乎全部的水汽量。大气的对流在这一层十分发达,气温随高度的下升而均匀下降,平均每上升100米降低06℃,在11千米附近温度下降到-55℃。在这层里,大气的活动异常激烈,或者上升,或者下降,甚至还会翻滚。正是由于这些不断变化着的大气运动,形成了多种多样复杂的天气变化,风、云、雨、雪、雾、露、雷、雹也多发生在这个层次里,因而也有人称这层为气象层。

这层的顶部叫对流层顶,这里气温不再随高度上升而降低,而是基本不变,是一个很稳定的层次,对流层里的天气影响不到这儿来。这里经常晴空万里,能见度极高,空气平稳,非常适宜喷气客气的飞行。

平流层

:从对流层顶向上到55千米高空附近。。这一层是地球大气中臭氧集中的地方,尤其是在其下部,即在15~25千米高度上臭氧浓度最大,因而这一层又称臭氧层。由于臭氧层能大量吸收太阳辐射热而使空气温度大大升高,所以这一层的最大特点是温度随高度的上升而升高,到顶部温度增大到最大值。

平流层虽然水汽极少,天气现象比较少见,但随着气象火箭和卫星的发射,发现这一层的气流等的变化与对流层中天气变化有着密切联系,相互影响。

中层:从平流层顶向上,也就是从55千米到80千米这个范围被命名为中层大气,简称中层。在这里,温度随高度而下降,大约在80千米左右达到最低点,约为-90℃。

热层:从中层大气向上到500千米左右的范围。之所以叫热层,是因为这层中的空气分子和离子直接吸收太阳紫外辐射能量,因而运动速度很快,和高温气体一样。这里空气极其稀薄,尽管热层顶的气温可达1000℃(太阳比较宁静时)~2000℃(太阳活动剧烈时),但实际上却根本不会感到热。

逃逸层:500千米以上是外大气层,这一层顶也就是地球大气层的顶。在这里地球的引力很小。再加上空气又特别稀薄,气体分子互相碰撞的机会很小,因此空气分子就像一颗颗微小的导弹一样高速地飞来飞去,一旦向上飞去,就会进入碰撞机会极小的区域,最后它将告别地球进入星际空间

,所以外大气层被称为逃逸层。这一层温度极高,但近于等温。这里的空气也处于高度电离状态。

除了按温度分层外,根据大气的电磁特性,还可以将大气划分为中性层、电离层和磁层。中性层是指地面到60千米高度,这里大气各成分多处于中性,即非电离状态;在60千米~500千米的大气层称为电离层。500千米以上的称为磁层。

电离层:在这里,由于太阳辐射的影响,大气物质开始电离。根据电离层电子的浓度及对电磁波

反向的不同效果,又可划分为D层(大约在60~90千米高度)、E层(约110千米高度)、F1层(约160千米高度)、F2层(300千米高度),以及更高的G层等。根据气象火箭和人造卫星的观测,大约在离地300在远距离无线电通信方面起着很重要的作用。无线电波

借助于在地面和电离层之间的多次反射而传播,实现了远距离的无线电通信。人们形容电离层为一面反射电波的镜子”。

不过,电离层反射的只是普通的无线电广播采用的波段,对于波长较短的无线电波则起不到反射作用。电视机采用的恰恰是波长较短的无线电波,这就是电视机为什么收看不到远处电视台节目的原因。为了能收看到大洋彼岸的电视节目,科学家利用在赤道上空36000千米高度的静止地球卫星来传播电视信号,使生动的电视画面越过大洋或大陆,送到千家万户

天有多高呢?前苏联的科学家曾乘坐特制气球做过一次详细的高空探测。当气球升到108千米高空时,天空呈暗蓝色;继续升到13千米高空时,天空却变成暗紫色;待接近18千米高空时,由于空气异常稀薄,光线不再发生散射,故天空一片漆黑。所以名副其实的“蓝天”高度,大约距地面仅有10千米。

地有多厚呢?根据人造卫星测定,位于南美厄瓜多尔的钦博拉索山是地壳最厚的地方,尽管其海拔只有6310米,但由于它靠近赤道,而地球赤道半径较之两极半径长,所以它距地心的距离比世界第一峰——珠穆朗玛峰距地心的距离还多2千米。德岛大学的科学家考察,在濒临南美洲的大西洋海底,有一条从北向南的裂缝,其地壳最薄处为16千米。至今,经过科学家综合测算,地壳平均厚度大约17千米。

天高,自然从地面算起。可是算到哪儿为止呢?通常是指大气层的的高度。过去认为厚约八百千米,以后探测到在距地面一千至二千千米高处仍有空气存在。近二十年来,根据人造地球卫星和宇宙火箭的考察结果。在二千至三千千米的高空,也找到了气体分子。在远离地球一万六千千米的高空,还存在着气体的痕迹。 地下的情况怎么样呢?科学家们推断:地球内部可以分成地壳、地幔、地核等不同性质的同心圈层。 地壳在大陆上厚度平均六十多千米。而岩石圈是从地壳以后到深达一千二百千米处的层圈。 在岩石圈以后到离地面二千九百千米间,叫中间层,或由中间带。中间层以下到地球中心的部分,是半径达三千四百七十一公里的核心,就是地核---外核平均厚二千二百千米,内核半径一千二百七十一千米。目前,人类钻进不过八至十千米,还远没有突破地壳。

3 天有多高,通常是指大气层的高度。过去认为高约800千米,以后探测到1000—2000千

米有空气存在。近20年,根据人造地球卫星和宇宙火箭考察,在2000—3000千米的高空,还存在着气体的痕迹。

地有多厚,科学家们认为,地球内部可以分为地壳、岩石圈层、中间层和地核等不同性质的同心圈层。地壳在大陆上的厚度平均60千米;而岩石圈层是从地壳以下到深1200千米处的圈层;在岩石圈层以下到离地面2900千米间,叫中间层或间带;中间层以下到地球的中心部分是半径达3471千米的核心,就是地核——外核平均2200千米,内核半径1271千米。因此

“地厚”约7631千米。

4 我国有句俗话叫“不知天高地厚”,比喻见识短浅,狂妄自大。然而,随着科学技术的飞速发展,天高地厚已不再神秘莫测。

前苏联的3位科学家曾乘坐特制气球做过一次详尽的高空探测。据资料记载,在8.6千米高空以下,天空一直是湛蓝的;当气球升至10.8千米高空时,天空则呈暗蓝色;继而升至13千米高空时,天空变成暗紫色;待接近18千米高空时,由于空气异常稀薄,光线不再发生散射,故天空一片漆黑。所以,名副其实的“蓝天”高度,大约距地面10千米。

地有多厚?根据人造卫星测定,位于南美厄瓜多尔的钦博拉索山是地壳最厚的地方。尽管其海拔只有6310米,但它靠近赤道。而地球赤道半径较之两极半径长约21千米,所以它距地心比世界第一峰———珠穆朗玛峰还多2千米。另据美国布朗大学和罗德岛大学科学家们的考察,在南美洲东边的大西洋底,沿大西洋中脊的一条从北向南的裂缝中,发现地壳最薄处为1.6千米。迄今,经过科学家综合测算,地壳平均厚度大约为17千米。如果从南极点挖一个洞,一直挖到北极点,那么这条隧道的总长度可达1.27万千米。

天有600多万千米高

如果用科学的说法来说的话,地的厚度应该是地球的直径,关于天的高度,现在科学家已经用科学的方法观测到100万光年的距离,还没有看到宇宙的边缘,也就是说,现在的观念应该是天有无限高(最起码是应该大于100万光年)。

天到底有多高呢?人类一直在孜孜以求,探索着这个问题:

1783年,法国的孟特格菲兄弟俩成功地释放了人类第一个热气球,热气球载着两名勇敢者飞上天空。这个热气球上升了900多米。

1804年,法国科学家盖吕萨克乘气球上升到了约7千米的高度。

1892年,科学家设计出带有仪器的无人乘坐的气球,这样就能升得更高。

20世纪30年代,科学家设计出能保持地球表面空气压力和温度的密封舱,人类得以进入更高的大气层。

1938年,被命名为“探险者2号”的气球上升到21千米的高空。

1960年,载人气球已能上升到345千米,而不载人气球已能到达40-50米的高空。

再后来,飞机、火箭、人造地球卫星的发明,使人们对大气层有了更科学的认识。

大气层随与地表面的高度不同,其内含的成份、物理、化学特征不同,科学家为了研究揭开大气的秘密,把整个大气层根据其温度变化、成分、电磁特性随高度分布的不同而分成若干层次。

温度变化科学家将大气层分为5层:

对流层:从地面到大约10~16千米处(极地大约8~9千米,赤道15~18千米),是大气层的最底层。这一层集中了约整个大气的四分之三的质量和几乎全部的水汽量。大气的对流在这一层十分发达,气温随高度的下升而均匀下降,平均每上升100米降低06℃,在11千米附近温度下降到-55℃。在这层里,大气的活动异常激烈,或者上升,或者下降,甚至还会翻滚。正是由于这些不断变化着的大气运动,形成了多种多样复杂的天气变化,风、云、雨、雪、雾、露、雷、雹也多发生在这个层次里,因而也有人称这层为气象层。

这层的顶部叫对流层顶,这里气温不再随高度上升而降低,而是基本不变,是一个很稳定的层次,对流层里的天气影响不到这儿来。这里经常晴空万里,能见度极高,空气平稳,非常适宜喷气客气的飞行。

平流层:从对流层顶向上到55千米高空附近。。这一层是地球大气中臭氧集中的地方,尤其是在其下部,即在15~25千米高度上臭氧浓度最大,因而这一层又称臭氧层。由于臭氧层能大量吸收太阳辐射热而使空气温度大大升高,所以这一层的最大特点是温度随高度的上升而升高,到顶部温度增大到最大值。

平流层虽然水汽极少,天气现象比较少见,但随着气象火箭和卫星的发射,发现这一层的气流等的变化与对流层中天气变化有着密切联系,相互影响。

中层:从平流层顶向上,也就是从55千米到80千米这个范围被命名为中层大气,简称中层。在这里,温度随高度而下降,大约在80千米左右达到最低点,约为-90℃。

热层:从中层大气向上到500千米左右的范围。之所以叫热层,是因为这层中的空气分子和离子直接吸收太阳紫外辐射能量,因而运动速度很快,和高温气体一样。这里空气极其稀薄,尽管热层顶的气温可达1000℃(太阳比较宁静时)~2000℃(太阳活动剧烈时),但实际上却根本不会感到热。

逃逸层:500千米以上是外大气层,这一层顶也就是地球大气层的顶。在这里地球的引力很小。再加上空气又特别稀薄,气体分子互相碰撞的机会很小,因此空气分子就像一颗颗微小的导弹一样高速地飞来飞去,一旦向上飞去,就会进入碰撞机会极小的区域,最后它将告别地球进入星际空间,所以外大气层被称为逃逸层。这一层温度极高,但近于等温。这里的空气也处于高度电离状态。

除了按温度分层外,根据大气的电磁特性,还可以将大气划分为中性层、电离层和磁层。中性层是指地面到60千米高度,这里大气各成分多处于中性,即非电离状态;在60千米~500千米的大气层称为电离层。500千米以上的称为磁层。

电离层:在这里,由于太阳辐射的影响,大气物质开始电离。根据电离层电子的浓度及对电磁波反向的不同效果,又可划分为D层(大约在60~90千米高度)、E层(约110千米高度)、F1层(约160千米高度)、F2层(300千米高度),以及更高的G层等。根据气象火箭和人造卫星的观测,大约在离地300在远距离无线电通信方面起着很重要的作用。无线电波借助于在地面和电离层之间的多次反射而传播,实现了远距离的无线电通信。人们形容电离层为一面反射电波的镜子”。

不过,电离层反射的只是普通的无线电广播采用的波段,对于波长较短的无线电波则起不到反射作用。电视机采用的恰恰是波长较短的无线电波,这就是电视机为什么收看不到远处电视台节目的原因。为了能收看到大洋彼岸的电视节目,科学家利用在赤道上空36000千米高度的静止地球卫星来传播电视信号,使生动的电视画面越过大洋或大陆,送到千家万户的电视机中。

我们还有这样的感觉,有些广播电台的广播在较远的地方白天收不到,而到晚上就能收到。这是因为D层往往在白天形成,夜间消散,它在白天起到衰减无线电波传播的作用。

磁层:在大气科学中有时还500千米以上的大气层称为磁层。因为在这里,地球磁场对大气的运动起着决定性的作用。磁层在太阳风的作用下发生一系列变化:向着太阳的一面被压缩了,而在背着太阳的一面形成了一个类似于慧星一样的长尾巴枣磁尾。向着太阳的一端距地心约十几个地球半径,即 70000~80000千米,它的尾长(背着太阳一端)约l00个地球半径,即600多万千米。

太阳风是太阳向外抛出的稳定粒子流。它与磁层之间的边界即为磁层顶,顶以外即为星际空间。因此也有人认为磁层顶才是大气圈的顶。

天究竟有多高?

如果用科学的说法来说的话,地的厚度应该是地球的直径,关于天的高度,现在科学家已经用科学的方法观测到100万光年的距离,还没有看到宇宙...
点击下载
热门文章
    确认删除?
    回到顶部